Aircraft in the context of "Contrail"

⭐ In the context of contrail formation, what role do impurities like soot and sulfur compounds found in jet fuel play?

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Aircraft in the context of Contrail

Contrails (/ˈkɒntrlz/; short for "condensation trails") or vapour trails are line-shaped clouds produced by aircraft engine exhaust or changes in air pressure, typically at aircraft cruising altitudes several kilometres/miles above the Earth's surface. They are composed primarily of water, in the form of ice crystals. The combination of water vapor in aircraft engine exhaust and the low ambient temperatures at high altitudes cause the trails' formation.

Impurities in the engine exhaust from the fuel, including soot and sulfur compounds (0.05% by weight in jet fuel) provide some of the particles that serve as cloud condensation nuclei for water droplet growth in the exhaust. If water droplets form, they can freeze to form ice particles that compose a contrail. Their formation can also be triggered by changes in air pressure in wingtip vortices, or in the air over the entire wing surface. Contrails, and other clouds caused directly by human activity, are called homogenitus.

↓ Explore More Topics
In this Dossier

Aircraft in the context of Aviation

Aviation includes the activities surrounding mechanical flight and the aircraft industry. Aircraft include fixed-wing and rotary-wing types, morphable wings, wing-less lifting bodies, as well as lighter-than-air aircraft such as hot air balloons and airships.

Aviation began in the 18th century with the development of the hot air balloon, an apparatus capable of atmospheric displacement through buoyancy. Clément Ader built the "Ader Éole" in France and made an uncontrolled, powered hop in 1890. This was the first powered aircraft, although it did not achieve controlled flight. Some of the most significant advancements in aviation technology came with the controlled gliding flying of Otto Lilienthal in 1896. A major leap followed with the construction of the Wright Flyer, the first powered airplane by the Wright brothers in the early 1900s.

↑ Return to Menu

Aircraft in the context of Vehicle

A vehicle (from Latin vehiculum) is a machine designed for self-propulsion, usually to transport people, cargo, or both. The term "vehicle" typically refers to ground transport vehicles such as human-powered land vehicles (e.g. bicycles, tricycles, velomobiles), animal-powered transports (e.g. horse-drawn carriages/wagons, ox carts, dog sleds), motor vehicles (e.g. motorcycles, cars, trucks, buses, mobility scooters) and railed vehicles (trains, trams and monorails), but more broadly also includes cable transport (cable cars and elevators), watercraft (ships, boats and underwater vehicles), amphibious vehicles (e.g. screw-propelled vehicles, hovercraft, seaplanes), aircraft (airplanes, helicopters, gliders and aerostats) and space vehicles (spacecraft, spaceplanes and launch vehicles).

This article primarily concerns the more ubiquitous land vehicles, which can be broadly classified by the type of contact interface with the ground: wheels, tracks, rails or skis, as well as the non-contact technologies such as maglev. ISO 3833-1977 is the international standard for road vehicle types, terms and definitions.

↑ Return to Menu

Aircraft in the context of Aerial photography

Aerial photography (or airborne imagery) is the taking of photographs from an aircraft or other airborne platforms. When taking motion pictures, it is also known as aerial videography.

Platforms for aerial photography include fixed-wing aircraft, helicopters, unmanned aerial vehicles (UAVs or "drones"), balloons, blimps and dirigibles, rockets, pigeons, kites, or using action cameras while skydiving or wingsuiting. Handheld cameras may be manually operated by the photographer, while mounted cameras are usually remotely operated or triggered automatically.

↑ Return to Menu

Aircraft in the context of Airshow

An air show (or airshow, air fair, air tattoo) is a public event where aircraft are exhibited. They often include aerobatics demonstrations, without which they are called "static air shows" with aircraft parked on the ground.

The largest air show measured by number of exhibitors and size of exhibit space is Le Bourget, followed by Farnborough, with the Dubai Airshow and Singapore Airshow both claiming third place. The largest air show or fly-in by number of participating aircraft is EAA AirVenture Oshkosh, with approximately 10,000 aircraft participating annually. The biggest military airshow in the world is the Royal International Air Tattoo, at RAF Fairford in the United Kingdom. On the other hand, FIDAE in II Air Brigade of the FACH, next to the Arturo Merino Benítez International Airport in Santiago, Chile, is the largest aerospace fair in Latin America and the Southern Hemisphere.

↑ Return to Menu

Aircraft in the context of Dashboard

A dashboard (also called dash, instrument panel or IP, or fascia) is a control panel set within the central console of a vehicle, boat, or cockpit of an aircraft or spacecraft. Usually located directly ahead of the driver (or pilot), it displays instrumentation and controls for the vehicle's operation. An electronic equivalent may be called an electronic instrument cluster, digital instrument panel, digital dash, digital speedometer or digital instrument cluster. By analogy, a succinct display of various types of related visual data in one place is also called a dashboard.

↑ Return to Menu

Aircraft in the context of Aircraft hijacking

Aircraft hijacking (also known as airplane hijacking, skyjacking, plane hijacking, plane jacking, air robbery, air piracy, or aircraft piracy, with the last term used within the special aircraft jurisdiction of the United States) is the unlawful seizure of an aircraft by an individual or a group. Dating from the earliest of hijackings, most cases involve the pilot being forced to fly according to the hijacker's demands. There have also been incidents where the hijackers have overpowered the flight crew, made unauthorized entry into the cockpit and flown them into buildings—most notably in the September 11 attacks—and in some cases, planes have been hijacked by the official pilot or co-pilot, such as with Ethiopian Airlines Flight 702.

Unlike carjacking or sea piracy, an aircraft hijacking is not usually committed for robbery or theft. Individuals driven by personal gain often divert planes to destinations where they are not planning to go themselves. Some hijackers intend to use passengers or crew as hostages, either for monetary ransom or for some political or administrative concession by authorities. Various motives have driven such occurrences, such as demanding the release of certain high-profile individuals or for the right of political asylum (notably Ethiopian Airlines Flight 961), but sometimes a hijacking may have been affected by a failed private life or financial distress, as in the case of Aarno Lamminparras in Finnair Flight 405. Hijackings involving hostages have produced violent confrontations between hijackers and the authorities, during negotiation and settlement. In several cases – most famously Air France Flight 139, Lufthansa Flight 181, and Air France Flight 8969 – the hijackers were not satisfied and showed no inclination to surrender, resulting in the deployment of counterterrorist police tactical units or special forces to rescue the passengers.

↑ Return to Menu

Aircraft in the context of Vehicle armour

Military vehicles are commonly armoured (or armored; see spelling differences) to withstand the impact of shrapnel, bullets, shells, rockets, and missiles, protecting the personnel inside from enemy fire. Such vehicles include armoured fighting vehicles like tanks, aircraft, and ships.

Civilian vehicles may also be armoured. These vehicles include cars used by officials (e.g., presidential limousines), reporters and others in conflict zones or where violent crime is common. Civilian armoured cars are also routinely used by security firms to carry money or valuables to reduce the risk of highway robbery or the hijacking of the cargo.

↑ Return to Menu

Aircraft in the context of Automation

Automation describes a wide range of technologies that reduce human intervention in processes, mainly by predetermining decision criteria, subprocess relationships, and related actions, as well as embodying those predeterminations in machines. Automation has been achieved by various means including mechanical, hydraulic, pneumatic, electrical, electronic devices, and computers, usually in combination. Complicated systems, such as modern factories, airplanes, and ships typically use combinations of all of these techniques. The benefits of automation includes labor savings, reducing waste, savings in electricity costs, savings in material costs, and improvements to quality, accuracy, and precision.

Automation includes the use of various equipment and control systems such as machinery, processes in factories, boilers, and heat-treating ovens, switching on telephone networks, steering, stabilization of ships, aircraft and other applications and vehicles with reduced human intervention. Examples range from a household thermostat controlling a boiler to a large industrial control system with tens of thousands of input measurements and output control signals. Automation has also found a home in the banking industry. It can range from simple on-off control to multi-variable high-level algorithms in terms of control complexity.

↑ Return to Menu

Aircraft in the context of Radar

Radar is a system that uses radio waves to determine the distance (ranging), direction (azimuth and elevation angles), and radial velocity of objects relative to the site. It is a radiodetermination method used to detect and track aircraft, ships, spacecraft, guided missiles, motor vehicles, weather formations and terrain. The term RADAR was coined in 1940 by the United States Navy as an acronym for "radio detection and ranging". The term radar has since entered English and other languages as an anacronym, a common noun, losing all capitalization.

A radar system consists of a transmitter producing electromagnetic waves in the radio or microwave domain, a transmitting antenna, a receiving antenna (often the same antenna is used for transmitting and receiving) and a receiver and processor to determine properties of the objects. Radio waves (pulsed or continuous) from the transmitter reflect off the objects and return to the receiver, giving information about the objects' locations and speeds. This device was developed secretly for military use by several countries in the period before and during World War II. A key development was the cavity magnetron in the United Kingdom, which allowed the creation of relatively small systems with sub-meter resolution.

↑ Return to Menu