Propulsion in the context of "Vehicle"

⭐ In the context of vehicles, self-propulsion is considered…

Ad spacer

⭐ Core Definition: Propulsion

Propulsion is the generation of force by any combination of pushing or pulling to modify the translational motion of an object, which is typically a rigid body (or an articulated rigid body) but may also concern a fluid. The term is derived from two Latin words: pro, meaning before or forward; and pellere, meaning to drive. A propulsion system consists of a source of mechanical power, and a propulsor (means of converting this power into propulsive force).

Plucking a guitar string to induce a vibratory translation is technically a form of propulsion of the guitar string; this is not commonly depicted in this vocabulary, even though human muscles are considered to propel the fingertips. The motion of an object moving through a gravitational field is affected by the field, and within some frames of reference physicists speak of the gravitational field generating a force upon the object, but for deep theoretic reasons, physicists now consider the curved path of an object moving freely through space-time as shaped by gravity as a natural movement of the object, unaffected by a propulsive force (in this view, the falling apple is considered to be unpropelled, while the observer of the apple standing on the ground is considered to be propelled by the reactive force of the Earth's surface).

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Propulsion in the context of Vehicle

A vehicle (from Latin vehiculum) is a machine designed for self-propulsion, usually to transport people, cargo, or both. The term "vehicle" typically refers to ground transport vehicles such as human-powered land vehicles (e.g. bicycles, tricycles, velomobiles), animal-powered transports (e.g. horse-drawn carriages/wagons, ox carts, dog sleds), motor vehicles (e.g. motorcycles, cars, trucks, buses, mobility scooters) and railed vehicles (trains, trams and monorails), but more broadly also includes cable transport (cable cars and elevators), watercraft (ships, boats and underwater vehicles), amphibious vehicles (e.g. screw-propelled vehicles, hovercraft, seaplanes), aircraft (airplanes, helicopters, gliders and aerostats) and space vehicles (spacecraft, spaceplanes and launch vehicles).

This article primarily concerns the more ubiquitous land vehicles, which can be broadly classified by the type of contact interface with the ground: wheels, tracks, rails or skis, as well as the non-contact technologies such as maglev. ISO 3833-1977 is the international standard for road vehicle types, terms and definitions.

↓ Explore More Topics
In this Dossier

Propulsion in the context of Chariot

A chariot is a type of vehicle similar to a cart, driven by a charioteer, usually using horses to provide rapid motive power. The oldest known chariots have been found in burials of the Sintashta culture in modern-day Chelyabinsk Oblast, Russia, dated to c. 1950–1880 BC and are depicted on cylinder seals from Central Anatolia in Kültepe dated to c. 1900 BC. The critical invention that allowed the construction of light, horse-drawn chariots was the spoked wheel.

The chariot was a fast, light, open, two-wheeled conveyance drawn by two or more equids (usually horses) that were hitched side by side, and was little more than a floor with a waist-high guard at the front and sides. It was initially used for ancient warfare during the Bronze and Iron Ages, but after its military capabilities had been superseded by light and heavy cavalries, chariots continued to be used for travel and transport, in processions, for games, and in races.

↑ Return to Menu

Propulsion in the context of Soft-bodied organism

Soft-bodied organisms are organisms that lack rigid physical skeletons or frame, roughly corresponds to the group Vermes as proposed by Carl von Linné. The term typically refers to non-panarthropod invertebrates from the kingdom Animalia, although many non-vascular plants (mosses and algae), fungi (such as jelly fungus), lichens and slime molds can also be seen as soft-bodied organisms by definition.

All animals have a muscular system of some sort but, since myocytes are tensile actuator units that can only contract and pull but never push, some animals evolved rigid body parts upon which the muscles can attach and act as levers/cantilevers to redirect force and produce locomotive propulsion. These rigid parts also serve as structural elements to resist gravity and ambient pressure, as well as sometimes provide protective surfaces shielding internal structures from trauma and exposure to external thermal, chemical and pathogenic insults. Such physical structures are the commonly referred "skeletons", which may be internal (as in vertebrates, echinoderms and sponges) or external (as in arthropods and non-coleoid molluscs). However, many soft-bodied animals do still have a functional skeleton maintained by body fluid hydrostatics known as a hydroskeleton, such as that of earthworms, jellyfish, tapeworms, squids and an enormous variety of invertebrates from almost every phyla of the animal kingdom; and many have hardened teeth that allow them to chew, bite and burrow despite the rest of body being soft.

↑ Return to Menu

Propulsion in the context of Lymphatic vessel

The lymphatic vessels (or lymph vessels or lymphatics) are thin-walled vessels (tubes), structured like blood vessels, that carry lymph. As part of the lymphatic system, lymph vessels are complementary to the cardiovascular system. Lymph vessels are lined by endothelial cells, and have a thin layer of smooth muscle, and adventitia that binds the lymph vessels to the surrounding tissue. Lymph vessels are devoted to the propulsion of the lymph from the lymph capillaries, which are mainly concerned with the absorption of interstitial fluid from the tissues. Lymph capillaries are slightly bigger than their counterpart capillaries of the vascular system. Lymph vessels that carry lymph to a lymph node are called afferent lymph vessels, and those that carry it from a lymph node are called efferent lymph vessels, from where the lymph may travel to another lymph node, may be returned to a vein, or may travel to a larger lymph duct. Lymph ducts drain the lymph into one of the subclavian veins and thus return it to general circulation.

The vessels that bring lymph away from the tissues and towards the lymph nodes can be classified as afferent vessels. These afferent vessels then drain into the subcapsular sinus. The efferent vessels that bring lymph from the lymphatic organs to the nodes bringing the lymph to the right lymphatic duct or the thoracic duct, the largest lymph vessel in the body. These vessels drain into the right and left subclavian veins, respectively. There are far more afferent vessels bringing in lymph than efferent vessels taking it out to allow for lymphocytes and macrophages to fulfill their immune support functions. The lymphatic vessels contain valves.

↑ Return to Menu

Propulsion in the context of Missile

A missile is an airborne ranged weapon capable of self-propelled flight aided usually by a propellant, jet engine or rocket motor.

Historically, 'missile' referred to any projectile that is thrown, shot or propelled towards a target; this usage is still recognized today with any unguided jet- or rocket-propelled weapons generally described as rocket artillery. Airborne explosive devices without propulsion are referred to as shells if fired by an artillery piece and bombs if dropped by an aircraft.

↑ Return to Menu

Propulsion in the context of Electric vehicle

An electric vehicle (EV) is any motorized vehicle whose propulsion is provided fully or mostly by electric power, via grid electricity or from onboard rechargeable batteries. EVs encompass a wide range of transportation modes, including road (electric cars, buses, trucks and personal transporters) and rail vehicles (electric trains, trams and monorails), electric boats and submersibles, electric aircraft (both fixed-wing and multirotors) and electric spacecraft.

Early electric vehicles first came into existence in the late 19th century, when the Second Industrial Revolution brought forth electrification and mass utilization of DC and AC electric motors. Using electricity was among the preferred methods for early motor vehicle propulsion as it provided a level of quietness, comfort and ease of operation that could not be achieved by the gasoline engine cars of the time, but range anxiety due to the limited energy storage offered by contemporary battery technologies hindered any mass adoption of electric vehicles as private transportation throughout the 20th century. Internal combustion engines (both gasoline and diesel engines) were the dominant propulsion mechanisms for cars and trucks for about 100 years, but electricity-powered locomotion remained commonplace in other vehicle types, such as overhead line-powered mass transit vehicles like electric multiple units, streetcars, monorails and trolley buses, as well as various small, low-speed, short-range battery-powered personal vehicles such as mobility scooters.

↑ Return to Menu

Propulsion in the context of Energy efficiency in transport

The energy efficiency in transport is the useful travelled distance, of passengers, goods or any type of load; divided by the total energy put into the transport propulsion means. The energy input might be rendered in several different types depending on the type of propulsion, and normally such energy is presented in liquid fuels, electrical energy or food energy. The energy efficiency is also occasionally known as energy intensity. The inverse of the energy efficiency in transport is the energy consumption in transport.

Energy efficiency in transport is often described in terms of fuel consumption, fuel consumption being the reciprocal of fuel economy. Nonetheless, fuel consumption is linked with a means of propulsion which uses liquid fuels, whilst energy efficiency is applicable to any sort of propulsion. To avoid said confusion, and to be able to compare the energy efficiency in any type of vehicle, experts tend to measure the energy in the International System of Units, i.e., joules.

↑ Return to Menu

Propulsion in the context of Motor vehicle

A motor vehicle, also known as a motorized vehicle, automotive vehicle, automobile, or road vehicle, is a self-propelled land vehicle, commonly wheeled, that can operate on rails (such as trains or trams), does not fly (such as airplanes or helicopters), does not float on water (such as boats or ships), and is used for the transportation of people or cargo.

The vehicle propulsion is provided by an engine or motor, usually a gasoline/diesel internal combustion engine or an electric traction motor, or some combination of the two as in hybrid electric vehicles and plug-in hybrid vehicles. For legal purpose, motor vehicles are often identified within a number of vehicle classes including cars, buses, motorcycles, off-road vehicles, light trucks and regular trucks. These classifications vary according to the legal codes of each country. ISO 3833:1977 is the standard for road vehicle types, terms and definitions. Typically, to avoid requiring people with disabilities from having to possess an operator's license to use one, or requiring tags and insurance, powered wheelchairs will be specifically excluded by law from being considered motor vehicles.

↑ Return to Menu