Aerostat in the context of "Vehicle"

⭐ In the context of vehicles, an aerostat is considered…

Ad spacer

⭐ Core Definition: Aerostat

An aerostat (from Ancient Greek ἀήρ (aḗr) 'air' and στατός (statós) 'standing', via French) or lighter-than-air aircraft is an aircraft that relies on buoyancy to maintain flight. Aerostats include unpowered balloons (free-flying or tethered) and powered airships.

The relative density of an aerostat as a whole is lower than that of the surrounding atmospheric air (hence the name "lighter-than-air"). Its main component is one or more gas capsules made of lightweight skins, containing a lifting gas (hot air, or any gas with lower density than air, typically hydrogen or helium) that displaces a large volume of air to generate enough buoyancy to overcome its own weight. Payload (passengers and cargo) can then be carried on attached components such as a basket, a gondola, a cabin or various hardpoints. With airships, which need to be able to fly against wind, the lifting gas capsules are often protected by a more rigid outer envelope or an airframe, with other gasbags such as ballonets to help modulate buoyancy.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Aerostat in the context of Vehicle

A vehicle (from Latin vehiculum) is a machine designed for self-propulsion, usually to transport people, cargo, or both. The term "vehicle" typically refers to ground transport vehicles such as human-powered land vehicles (e.g. bicycles, tricycles, velomobiles), animal-powered transports (e.g. horse-drawn carriages/wagons, ox carts, dog sleds), motor vehicles (e.g. motorcycles, cars, trucks, buses, mobility scooters) and railed vehicles (trains, trams and monorails), but more broadly also includes cable transport (cable cars and elevators), watercraft (ships, boats and underwater vehicles), amphibious vehicles (e.g. screw-propelled vehicles, hovercraft, seaplanes), aircraft (airplanes, helicopters, gliders and aerostats) and space vehicles (spacecraft, spaceplanes and launch vehicles).

This article primarily concerns the more ubiquitous land vehicles, which can be broadly classified by the type of contact interface with the ground: wheels, tracks, rails or skis, as well as the non-contact technologies such as maglev. ISO 3833-1977 is the international standard for road vehicle types, terms and definitions.

↓ Explore More Topics
In this Dossier

Aerostat in the context of Aviation

Aviation includes the activities surrounding mechanical flight and the aircraft industry. Aircraft include fixed-wing and rotary-wing types, morphable wings, wing-less lifting bodies, as well as lighter-than-air aircraft such as hot air balloons and airships.

Aviation began in the 18th century with the development of the hot air balloon, an apparatus capable of atmospheric displacement through buoyancy. Clément Ader built the "Ader Éole" in France and made an uncontrolled, powered hop in 1890. This was the first powered aircraft, although it did not achieve controlled flight. Some of the most significant advancements in aviation technology came with the controlled gliding flying of Otto Lilienthal in 1896. A major leap followed with the construction of the Wright Flyer, the first powered airplane by the Wright brothers in the early 1900s.

↑ Return to Menu

Aerostat in the context of Flight

Flight or flying is the motion of an object through an atmosphere or through the vacuum of space, in this case also called spaceflight, without contacting any planetary surface. This can be achieved by generating aerodynamic lift associated with gliding or propulsive thrust, aerostatically using buoyancy, or by ballistic movement.

Many things can fly, from animal aviators such as birds, bats and insects, to natural gliders/parachuters such as patagial animals, anemochorous seeds and ballistospores, to human inventions like aircraft (airplanes, helicopters, airships, balloons, etc.) and rockets which may propel spacecraft and spaceplanes.

↑ Return to Menu

Aerostat in the context of Balloon (aeronautics)

In aeronautics, a balloon is an unpowered aerostat, which remains aloft or floats due to its buoyancy. It may use hot air as a lifting gas, or it may use gas that is not air like hydrogen or helium. A balloon may be free, moving with the wind, or tethered to a fixed point. It is distinct from an airship, which is a powered aerostat that can propel itself through the air in a controlled manner.

Many balloons have a basket, gondola, or capsule suspended beneath the main envelope for carrying people or equipment (including cameras and telescopes, and flight-control mechanisms).

↑ Return to Menu

Aerostat in the context of Airship

An airship, dirigible balloon or dirigible is a type of aerostat (lighter-than-air) aircraft that can navigate through the air flying under its own power. Aerostats use buoyancy from a lifting gas that is less dense than the surrounding air to achieve the lift needed to stay airborne.

In early dirigibles, the lifting gas used was hydrogen, due to its high lifting capacity and ready availability, but the inherent flammability led to several fatal accidents that rendered hydrogen airships obsolete. The alternative lifting gas, helium, is not flammable, but is rare and relatively expensive. Significant amounts were first discovered in the United States and for a while helium was only available for airship usage in North America. Most airships built since the 1960s have used helium, though some have used hot air.

↑ Return to Menu