Rare-earth element in the context of "Searchlight"

Play Trivia Questions online!

or

Skip to study material about Rare-earth element in the context of "Searchlight"

Ad spacer

⭐ Core Definition: Rare-earth element

The rare-earth elements (REE), also called rare-earth metals, or rare earths, are a set of 17 nearly indistinguishable lustrous silvery-white soft heavy metals. The 15 lanthanides (or lanthanoids), along with scandium and yttrium, are usually included as rare earths. Compounds containing rare-earths have diverse applications in electrical and electronic components, lasers, glass, magnetic materials, and industrial processes. Rare-earths are to be distinguished from critical minerals, which are materials of strategic or economic importance that are defined differently by different countries, and rare-earth minerals, which are minerals that contain one or more rare-earth elements as major metal constituents.

The term "rare-earth" is a misnomer, because they are not actually scarce, but because they are found only in compounds, not as pure metals, and are difficult to isolate and purify. They are relatively plentiful in the entire Earth's crust (cerium being the 25th-most-abundant element at 68 parts per million, more abundant than copper), but in practice they are spread thinly as trace impurities, so to obtain rare earths at usable purity requires processing enormous amounts of raw ore at great expense.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Rare-earth element in the context of Searchlight

A searchlight (or spotlight) is an apparatus that combines an extremely bright source (traditionally a carbon arc lamp) with a mirrored parabolic reflector to project a powerful beam of light of approximately parallel rays in a particular direction. It is usually constructed so that it can be swiveled about. The most common element used in modern searchlights is xenon (Xe). However, rare-earth elements such as lanthanum (La) and cerium (Ce) are used in phosphors to improve light quality in some specialized searchlights.

↓ Explore More Topics
In this Dossier

Rare-earth element in the context of Magnet

A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nickel, cobalt, etc. and attracts or repels other magnets.

A permanent magnet is an object made from a material that is magnetized and creates its own persistent magnetic field. An everyday example is a refrigerator magnet used to hold notes on a refrigerator door. Materials that can be magnetized, which are also the ones that are strongly attracted to a magnet, are called ferromagnetic (or ferrimagnetic). These include the elements iron, nickel and cobalt and their alloys, some alloys of rare-earth metals, and some naturally occurring minerals such as lodestone. Although ferromagnetic (and ferrimagnetic) materials are the only ones attracted to a magnet strongly enough to be commonly considered magnetic, all other substances respond weakly to a magnetic field, by one of several other types of magnetism.

↑ Return to Menu

Rare-earth element in the context of Cleveite

Cleveite is an impure radioactive variety of uraninite containing uranium, found in Norway. It has the composition UO2 with about 10% of the uranium substituted by rare-earth elements. It was named after Swedish chemist Per Teodor Cleve.

Cleveite was the first known terrestrial source of helium, which is created over time by alpha decay of the uranium and accumulates trapped (occluded) within the mineral. The first sample of helium was obtained by William Ramsay in 1895 when he treated a sample of the mineral with acid. Cleve and Abraham Langlet succeeded in isolating helium from cleveite at about the same time.

↑ Return to Menu

Rare-earth element in the context of Leaching (chemistry)

Leaching is the process of a solute becoming detached or extracted from its carrier substance by way of a solvent.

Leaching is a naturally occurring process which scientists have adapted for a variety of applications with a variety of methods. Specific extraction methods depend on the soluble characteristics relative to the sorbent material such as concentration, distribution, nature, and size. Leaching can occur naturally seen from plant substances (inorganic and organic), solute leaching in soil, and in the decomposition of organic materials. Leaching can also be applied affectedly to enhance water quality and contaminant removal, as well as for disposal of hazardous waste products such as fly ash, or rare earth elements (REEs). Understanding leaching characteristics is important in preventing or encouraging the leaching process and preparing for it in the case where it is inevitable.

↑ Return to Menu

Rare-earth element in the context of South China craton

The South China Craton or South China Block is one of the Precambrian continental blocks in China. It is traditionally divided into the Yangtze Block in the NW and the Cathaysia Block in the SE. The Jiangshan–Shaoxing Fault represents the suture boundary between the two sub-blocks. Recent study suggests that the South China Block possibly has one more sub-block which is named the Tolo Terrane. The oldest rocks in the South China Block occur within the Kongling Complex, which yields zircon U–Pb ages of 3.3–2.9 Ga.

There are three important reasons to study the South China Block. First, South China hosts a great deal of rare-earth element (REE) ores. Second, the South China Block is a key component of the Rodinia supercontinent. Therefore, such study helps us understand more about the supercontinent cycle. Third, almost all major known clades of Triassic marine reptiles have been recovered from the South China sedimentary sequences. They are important to understand the marine recovery after the Permian-Triassic mass extinction.

↑ Return to Menu

Rare-earth element in the context of Thorium

Thorium is a chemical element; it has symbol Th and atomic number 90. Thorium is a weakly radioactive light silver metal which tarnishes olive grey when it is exposed to air, forming thorium dioxide; it is moderately soft, malleable, and has a high melting point. Thorium is an electropositive actinide whose chemistry is dominated by the +4 oxidation state; it is quite reactive and can ignite in air when finely divided.

All known thorium isotopes are unstable. The most stable isotope, Th, has a half-life of 14.0 billion years, or about the age of the universe; it decays very slowly via alpha decay, starting a decay chain named the thorium series that ends at stable Pb. On Earth, thorium and uranium are the only elements with no stable or nearly-stable isotopes that still occur naturally in large quantities as primordial elements. Thorium is estimated to be over three times as abundant as uranium in the Earth's crust, and is chiefly refined from monazite sands as a by-product of extracting rare-earth elements.

↑ Return to Menu