Cerium in the context of "Searchlight"

Play Trivia Questions online!

or

Skip to study material about Cerium in the context of "Searchlight"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Cerium in the context of Searchlight

A searchlight (or spotlight) is an apparatus that combines an extremely bright source (traditionally a carbon arc lamp) with a mirrored parabolic reflector to project a powerful beam of light of approximately parallel rays in a particular direction. It is usually constructed so that it can be swiveled about. The most common element used in modern searchlights is xenon (Xe). However, rare-earth elements such as lanthanum (La) and cerium (Ce) are used in phosphors to improve light quality in some specialized searchlights.

↓ Explore More Topics
In this Dossier

Cerium in the context of Rare-earth element

The rare-earth elements (REE), also called rare-earth metals, or rare earths, are a set of 17 nearly indistinguishable lustrous silvery-white soft heavy metals. The 15 lanthanides (or lanthanoids), along with scandium and yttrium, are usually included as rare earths. Compounds containing rare-earths have diverse applications in electrical and electronic components, lasers, glass, magnetic materials, and industrial processes. Rare-earths are to be distinguished from critical minerals, which are materials of strategic or economic importance that are defined differently by different countries, and rare-earth minerals, which are minerals that contain one or more rare-earth elements as major metal constituents.

The term "rare-earth" is a misnomer, because they are not actually scarce, but because they are found only in compounds, not as pure metals, and are difficult to isolate and purify. They are relatively plentiful in the entire Earth's crust (cerium being the 25th-most-abundant element at 68 parts per million, more abundant than copper), but in practice they are spread thinly as trace impurities, so to obtain rare earths at usable purity requires processing enormous amounts of raw ore at great expense.

↑ Return to Menu

Cerium in the context of Martin Heinrich Klaproth

Martin Heinrich Klaproth (1 December 1743 – 1 January 1817) was a German chemist. He trained and worked for much of his life as an apothecary, moving in later life to the university. His shop became the second-largest apothecary in Berlin, and the most productive artisanal chemical research center in Europe.

Klaproth was a major systematizer of analytical chemistry, and an independent inventor of gravimetric analysis. His attention to detail and refusal to ignore discrepancies in results led to improvements in the use of apparatus. He was a major figure in understanding the composition of minerals and characterizing the elements. Klaproth discovered uranium (1789) and zirconium (1789). He was also involved in the discovery or co-discovery of titanium (1795), strontium (1793), cerium (1803), and chromium (1797) and confirmed the previous discoveries of tellurium (1798) and beryllium (1798).

↑ Return to Menu

Cerium in the context of Praseodymium

Praseodymium is a chemical element; it has symbol Pr and atomic number 59. It is the third member of the lanthanide series and is considered one of the rare-earth metals. It is a soft, silvery, malleable and ductile metal, valued for its magnetic, electrical, chemical, and optical properties. It is too reactive to be found in native form, and pure praseodymium metal slowly develops a green oxide coating when exposed to air.

Praseodymium always occurs naturally together with the other rare-earth metals. It is the sixth-most abundant rare-earth element and fourth-most abundant lanthanide, making up 9.1 parts per million of the Earth's crust, an abundance similar to that of boron. In 1841, Swedish chemist Carl Gustav Mosander extracted a rare-earth oxide residue he called didymium from a residue he called "lanthana", in turn separated from cerium salts. In 1885, the Austrian chemist Carl Auer von Welsbach separated didymium into two elements that gave salts of different colours, which he named praseodymium and neodymium. The name praseodymium comes from the Ancient Greek πράσινος (prasinos), meaning 'leek-green', and δίδυμος (didymos) 'twin'.

↑ Return to Menu