Scandium in the context of "Rare-earth element"

Play Trivia Questions online!

or

Skip to study material about Scandium in the context of "Rare-earth element"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Scandium in the context of Rare-earth element

The rare-earth elements (REE), also called rare-earth metals, or rare earths, are a set of 17 nearly indistinguishable lustrous silvery-white soft heavy metals. The 15 lanthanides (or lanthanoids), along with scandium and yttrium, are usually included as rare earths. Compounds containing rare-earths have diverse applications in electrical and electronic components, lasers, glass, magnetic materials, and industrial processes. Rare-earths are to be distinguished from critical minerals, which are materials of strategic or economic importance that are defined differently by different countries, and rare-earth minerals, which are minerals that contain one or more rare-earth elements as major metal constituents.

The term "rare-earth" is a misnomer, because they are not actually scarce, but because they are found only in compounds, not as pure metals, and are difficult to isolate and purify. They are relatively plentiful in the entire Earth's crust (cerium being the 25th-most-abundant element at 68 parts per million, more abundant than copper), but in practice they are spread thinly as trace impurities, so to obtain rare earths at usable purity requires processing enormous amounts of raw ore at great expense.

↓ Explore More Topics
In this Dossier

Scandium in the context of Dmitri Mendeleev

Dmitri Ivanovich Mendeleev (/ˌmɛndəlˈəf/ MEN-dəl-AY-əf; 8 February [O.S. 27 January] 1834 – 2 February [O.S. 20 January] 1907) was a Russian chemist known for formulating the periodic law and creating a version of the periodic table of elements. He used the periodic law not only to correct the then-accepted properties of some known elements, such as the valence and atomic weight of uranium, but also to predict the properties of three elements that were yet to be discovered (germanium, gallium, and scandium).

↑ Return to Menu

Scandium in the context of Cosmogenic nuclide

Cosmogenic nuclides (or cosmogenic isotopes) are rare nuclides (isotopes) created when a high-energy cosmic ray interacts with the nucleus of an in situ Solar System atom, causing nucleons (protons and neutrons) to be expelled from the atom (see cosmic ray spallation). These nuclides are produced within Earth materials such as rocks or soil, in Earth's atmosphere, and in extraterrestrial items such as meteoroids. By measuring cosmogenic nuclides, scientists are able to gain insight into a range of geological and astronomical processes. There are both radioactive and stable cosmogenic nuclides. Some of these radionuclides are tritium, carbon-14 and phosphorus-32.

Certain light (low atomic number) primordial nuclides (isotopes of lithium, beryllium and boron) are thought to have been created not only during the Big Bang, but also (and perhaps primarily) to have been made after the Big Bang, but before the condensation of the Solar System, by the process of cosmic ray spallation on interstellar gas and dust. This explains their higher abundance in cosmic dust as compared with their abundances on Earth. This also explains the overabundance of the early transition metals just before iron in the periodic table – the cosmic-ray spallation of iron produces scandium through chromium on the one hand and helium through boron on the other. However, the arbitrary defining qualification for cosmogenic nuclides of being formed "in situ in the Solar System" (meaning inside an already aggregated piece of the Solar System) prevents primordial nuclides formed by cosmic ray spallation before the formation of the Solar System from being termed "cosmogenic nuclides"—even though the mechanism for their formation is exactly the same. These same nuclides still arrive on Earth in small amounts in cosmic rays, and are formed in meteoroids, in the atmosphere, on Earth, "cosmogenically". However, beryllium (all of it stable beryllium-9) is present primordially in the Solar System in much larger amounts, having existed prior to the condensation of the Solar System, and thus present in the materials from which the Solar System formed.

↑ Return to Menu

Scandium in the context of Pyroxene

The pyroxenes (commonly abbreviated Px) are a group of important rock-forming inosilicate minerals found in many igneous and metamorphic rocks. Pyroxenes have the general formula XY(Si,Al)2O6, where X represents ions of calcium (Ca), sodium (Na), iron (Fe(II)) or magnesium (Mg) and more rarely zinc, manganese or lithium, and Y represents ions of smaller size, such as chromium (Cr), aluminium (Al), magnesium (Mg), cobalt (Co), manganese (Mn), scandium (Sc), titanium (Ti), vanadium (V) or even iron (Fe(II) or Fe(III)). Although aluminium substitutes extensively for silicon in silicates such as feldspars and amphiboles, the substitution occurs only to a limited extent in most pyroxenes. They share a common structure consisting of single chains of silica tetrahedra. Pyroxenes that crystallize in the monoclinic system are known as clinopyroxenes and those that crystallize in the orthorhombic system are known as orthopyroxenes.

The name pyroxene is derived from the Ancient Greek words for 'fire' (πυρ, pur) and 'stranger' (ξένος, xénos). Pyroxenes were so named due to their presence in volcanic lavas, where they are sometimes found as crystals embedded in volcanic glass; it was assumed they were impurities in the glass, hence the name meaning "fire stranger". However, they are simply early-forming minerals that crystallized before the lava erupted.

↑ Return to Menu

Scandium in the context of Scandium group

Group 3 is the first group of transition metals in the periodic table. This group is closely related to the rare-earth elements. It contains the four elements scandium (Sc), yttrium (Y), lutetium (Lu), and lawrencium (Lr). The group is also called the scandium group or scandium family after its lightest member.

The chemistry of the group 3 elements is typical for early transition metals: they all essentially have only the group oxidation state of +3 as a major one, and like the preceding main-group metals are quite electropositive and have a less rich coordination chemistry. Due to the effects of the lanthanide contraction, yttrium and lutetium are very similar in properties. Yttrium and lutetium have essentially the chemistry of the heavy lanthanides, but scandium shows several differences due to its small size. This is a similar pattern to those of the early transition metal groups, where the lightest element is distinct from the very similar next two.

↑ Return to Menu

Scandium in the context of Periodic trends

In chemistry, periodic trends are specific patterns present in the periodic table that illustrate different aspects of certain elements when grouped by period and/or group. They were discovered by the Russian chemist Dimitri Mendeleev in 1863. Major periodic trends include atomic radius, ionization energy, electron affinity, electronegativity, nucleophilicity, electrophilicity, valency, nuclear charge, and metallic character. Mendeleev built the foundation of the periodic table. Mendeleev organized the elements based on atomic weight, leaving empty spaces where he believed undiscovered elements would take their places. Mendeleev's discovery of this trend allowed him to predict the existence and properties of three unknown elements, which were later discovered by other chemists and named gallium, scandium, and germanium. English physicist Henry Moseley discovered that organizing the elements by atomic number instead of atomic weight would naturally group elements with similar properties.

↑ Return to Menu