Pyrolysis (/paɪˈrɒlɪsɪs/; from Ancient Greek πῦρ pûr 'fire' and λύσις lýsis 'separation') is a process involving the separation of covalent bonds in organic matter by thermal decomposition within an inert environment without oxygen.
Pyrolysis (/paɪˈrɒlɪsɪs/; from Ancient Greek πῦρ pûr 'fire' and λύσις lýsis 'separation') is a process involving the separation of covalent bonds in organic matter by thermal decomposition within an inert environment without oxygen.
Charcoal is a lightweight black carbon residue produced by strongly heating wood (or other animal and plant materials) in minimal oxygen to remove all water and volatile constituents. In the traditional version of this pyrolysis process, called charcoal burning, often by forming a charcoal kiln, the heat is supplied by burning part of the starting material itself, with a limited supply of oxygen. The material can also be heated in a closed retort. Modern charcoal briquettes used for outdoor cooking may contain many other additives, e.g. coal.
The early history of wood charcoal production spans ancient times, rooted in the abundance of wood in various regions. The process typically involves stacking wood billets to form a conical pile, allowing air to enter through openings at the bottom, and igniting the pile gradually. Charcoal burners, skilled professionals tasked with managing the delicate operation, often lived in isolation to tend their wood piles. Throughout history, the extensive production of charcoal has been a significant contributor to deforestation, particularly in regions like Central Europe. However, various management practices, such as coppicing, aimed to maintain a steady supply of wood for charcoal production. The scarcity of easily accessible wood resources eventually led to the transition to fossil fuel equivalents like coal.
View the full Wikipedia page for CharcoalSoot (/sʊt/ suut) is a mass of impure carbon particles resulting from the incomplete combustion of hydrocarbons. Soot is considered a hazardous substance with carcinogenic properties. Most broadly, the term includes all the particulate matter produced by this process, including black carbon and residual pyrolysed fuel particles such as coal, cenospheres, charred wood, and petroleum coke classified as cokes or char. It can include polycyclic aromatic hydrocarbons and heavy metals like mercury.
Soot causes various types of cancer and lung disease.
View the full Wikipedia page for SootCombustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel (the reductant) and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combustion does not always result in fire, because a flame is only visible when substances undergoing combustion vaporize, but when it does, a flame is a characteristic indicator of the reaction. While activation energy must be supplied to initiate combustion (e.g., using a lit match to light a fire), the heat from a flame may provide enough energy to make the reaction self-sustaining. The study of combustion is known as combustion science.
Combustion is often a complicated sequence of elementary radical reactions. Solid fuels, such as wood and coal, first undergo endothermic pyrolysis to produce gaseous fuels whose combustion then supplies the heat required to produce more of them. Combustion is often hot enough that incandescent light in the form of either glowing or a flame is produced. A simple example can be seen in the combustion of hydrogen and oxygen into water vapor, a reaction which is commonly used to fuel rocket engines. This reaction releases 242 kJ/mol of heat and reduces the enthalpy accordingly (at constant temperature and pressure):
View the full Wikipedia page for CombustionIncineration is a waste treatment process that involves the combustion of substances contained in waste materials. Industrial plants for waste incineration are commonly referred to as waste-to-energy facilities. Incineration and other high-temperature waste treatment systems are described as "thermal treatment". Incineration of waste materials converts the waste into ash, flue gas and heat. The ash is mostly formed by the inorganic constituents of the waste and may take the form of solid lumps or particulates carried by the flue gas. The flue gases must be cleaned of gaseous and particulate pollutants before they are dispersed into the atmosphere. In some cases, the heat that is generated by incineration can be used to generate electric power.
Incineration with energy recovery is one of several waste-to-energy technologies such as gasification, pyrolysis and anaerobic digestion. While incineration and gasification technologies are similar in principle, the energy produced from incineration is high-temperature heat whereas combustible gas is often the main energy product from gasification. Incineration and gasification may also be implemented without energy and materials recovery.
View the full Wikipedia page for IncinerationIn petrochemistry, petroleum geology and organic chemistry, cracking is the process whereby complex organic molecules such as kerogens or long-chain hydrocarbons are broken down into simpler molecules such as light hydrocarbons, by the breaking of carbon–carbon bonds in the precursors. The rate of cracking and the end products are strongly dependent on the temperature and presence of catalysts. Cracking is the breakdown of large hydrocarbons into smaller, more useful alkanes and alkenes. Simply put, hydrocarbon cracking is the process of breaking long-chain hydrocarbons into short ones. This process requires high temperatures.
More loosely, outside the field of petroleum chemistry, the term "cracking" is used to describe any type of splitting of molecules under the influence of heat, catalysts and solvents, such as in processes of destructive distillation or pyrolysis.
View the full Wikipedia page for Cracking (chemistry)Smoke is an aerosol (a suspension of airborne particulates and gases) emitted when a material undergoes combustion or pyrolysis, together with the quantity of air that is entrained or otherwise mixed into the mass. It is commonly an unwanted by-product of fires (including stoves, candles, internal combustion engines, oil lamps, and fireplaces), but may also be used for pest control (fumigation), communication (smoke signals), defensive and offensive capabilities in the military (smoke screen), cooking, or smoking (tobacco, cannabis, etc.). It is used in rituals where incense, sage, or resin is burned to produce a smell for spiritual or magical purposes. It can also be a flavoring agent and preservative.
Smoke inhalation is the primary cause of death in victims of indoor fires. The smoke kills by a combination of thermal damage, poisoning and pulmonary irritation caused by carbon monoxide, hydrogen cyanide and other combustion products.
View the full Wikipedia page for SmokeIn organic chemistry, xylene or xylol (from Greek ξύλον (xylon) 'wood'; IUPAC name: dimethylbenzene) is any of three organic compounds with the formula (CH3)2C6H4. They are derived from the substitution of two hydrogen atoms with methyl groups in a benzene ring; which hydrogens are substituted determines which of three structural isomers results. It is a colorless, flammable, slightly greasy liquid of great industrial value.
The mixture is referred to as both xylene and, more precisely, xylenes. Mixed xylenes refers to a mixture of the xylenes plus ethylbenzene. The four compounds have identical molecular formulas C8H10. Typically the four compounds are produced together by various catalytic reforming and pyrolysis methods.
View the full Wikipedia page for XyleneAn elimination reaction is a type of organic reaction in which two substituents are removed from a molecule in either a one- or two-step mechanism. The one-step mechanism is known as the E2 reaction, and the two-step mechanism is known as the E1 reaction. The numbers refer not to the number of steps in the mechanism, but rather to the kinetics of the reaction: E2 is bimolecular (second-order) while E1 is unimolecular (first-order). In cases where the molecule is able to stabilize an anion but possesses a poor leaving group, a third type of reaction, E1CB, exists. Finally, the pyrolysis of xanthate and acetate esters proceed through an "internal" elimination mechanism, the Ei mechanism.
View the full Wikipedia page for Elimination reactionCutan is one of two waxy biopolymers which occur in the cuticle of some plants. The other and better-known polymer is cutin. Cutan is believed to be a hydrocarbon polymer, whereas cutin is a polyester, but the structure and synthesis of cutan are not yet fully understood. Cutan is not present in as many plants as once thought; for instance it is absent in Ginkgo.
Cutan was first detected as a non-saponifiable component, resistant to de-esterification by alkaline hydrolysis, that increases in amount in cuticles of some species such as Clivia miniata as they reach maturity, apparently replacing the cutin secreted in the early stages of cuticle development. Evidence that cutan is a hydrocarbon polymer comes from the fact that its flash pyrolysis products are a characteristic homologous series of paired alkanes and alkenes, and through C-NMR analysis of present-day and fossil plants.
View the full Wikipedia page for Cutan (polymer)Tar is a dark brown or black viscous liquid of hydrocarbons and free carbon, obtained from a wide variety of organic materials through destructive distillation. Tar can be produced from coal, wood, petroleum, or peat.
Mineral products resembling tar can be produced from fossil hydrocarbons, such as petroleum. Coal tar is produced from coal as a byproduct of coke production.
View the full Wikipedia page for TarA rotary kiln is a pyroprocessing device used to raise materials to a high temperature (calcination) in a continuous process. Materials produced using rotary kilns include:
They are also used for roasting a wide variety of sulfide ores prior to metal extraction.
View the full Wikipedia page for Rotary kilnChar cloth, also called char paper, is a material with low ignition temperature, used as tinder when lighting a fire. It is the main component in a tinderbox. It is a small swatch of fabric made from a natural fibre (such as linen, cotton, jute etc.) that has been converted through pyrolysis.
View the full Wikipedia page for Char clothPine tar is a form of wood tar produced by the high temperature carbonization of pine wood in anoxic conditions (dry distillation or destructive distillation). The wood is rapidly decomposed by applying heat and pressure in a closed container; the primary resulting products are charcoal and pine tar.
Pine tar consists primarily of aromatic hydrocarbons, tar acids, and tar bases. Components of tar vary according to the pyrolytic process (e.g. method, duration, temperature) and origin of the wood (e.g. age of pine trees, type of soil, and moisture conditions during tree growth). The choice of wood, design of kiln, burning, and collection of the tar can vary. Pine stumps and roots are used in the traditional production of pine tar.
View the full Wikipedia page for Pine tarDestructive distillation is a chemical process in which decomposition of unprocessed material is achieved by heating it to a high temperature; the term generally applies to processing of organic material in the absence of air or in the presence of limited amounts of oxygen or other reagents, catalysts, or solvents, such as steam or phenols. It is an application of pyrolysis. The process breaks up or "cracks" large molecules. Coke, coal gas, gaseous carbon, coal tar, ammonia liquor, and coal oil are examples of commercial products historically produced by the destructive distillation of coal.
Destructive distillation of any particular inorganic feedstock produces only a small range of products as a rule, but destructive distillation of many organic materials commonly produces very many compounds, often hundreds, although not all products of any particular process are of commercial importance. The distillate are generally lower molecular weight. Some fractions however polymerise or condense small molecules into larger molecules, including heat-stable tarry substances and chars. Cracking feedstocks into liquid and volatile compounds, and polymerising, or the forming of chars and solids, may both occur in the same process, and any class of the products might be of commercial interest.
View the full Wikipedia page for Destructive distillationBlack carbon (BC) is the light-absorbing refractory form of elemental carbon remaining after pyrolysis (e.g., charcoal) or produced by incomplete combustion (e.g. soot).
Tihomir Novakov originated the term black carbon in the 1970s, after identifying black carbon as fine particulate matter (PM ≤ 2.5 μm aerodynamic diameter) in aerosols. Aerosol black carbon occurs in several linked forms. Formed through the incomplete combustion of fossil fuels, biofuel, and biomass, black carbon is one of the main types of soot particle in both anthropogenic and naturally occurring soot. As soot, black carbon causes disease and premature death. Because of these human health impacts, many countries have worked to reduce their emissions.
View the full Wikipedia page for Black carbonChar is the solid material that remains after light gases (e.g. coal gas) and tar have been driven out or released from a carbonaceous material during the initial stage of combustion, which is known as carbonization, charring, devolatilization or pyrolysis.
Further stages of efficient combustion (with or without char deposits) are known as gasification reactions, ending quickly when the reversible gas phase of the water gas shift reaction is reached.
View the full Wikipedia page for Char (chemistry)Pyrolytic carbon is a material similar to graphite, but with some covalent bonding between its graphene sheets as a result of imperfections in its production.
Pyrolytic carbon is man-made and is thought not to be found in nature. Generally it is produced by heating a hydrocarbon nearly to its decomposition temperature, and permitting the graphite to crystalize (pyrolysis).
View the full Wikipedia page for Pyrolytic carbon