Photometric system in the context of UBV photometric system


Photometric system in the context of UBV photometric system

Photometric system Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Photometric system in the context of "UBV photometric system"


⭐ Core Definition: Photometric system

In astronomy, a photometric system is a set of well-defined passbands (or optical filters), with a known sensitivity to incident radiation. The sensitivity usually depends on the optical system, detectors and filters used. For each photometric system a set of primary standard stars is provided.

A commonly adopted standardized photometric system is the Johnson-Morgan or UBV photometric system (1953). At present, there are more than 200 photometric systems.

↓ Menu
HINT:

👉 Photometric system in the context of UBV photometric system

The UBV photometric system (from Ultraviolet, Blue, Visual), also called the Johnson system (or Johnson-Morgan system), is a photometric system usually employed for classifying stars according to their colors. It was the first standardized photometric system. The apparent magnitudes of stars in the system are often used to determine the color indices B−V and U−B, the difference between the B and V magnitudes and the U and B magnitudes respectively. The system is defined using a set of color optical filters in combination with an RMA 1P21 photomultiplier tube.

The choice of colors on the blue end of the spectrum was assisted by the bias that photographic film has for those colors. It was introduced in the 1950s by American astronomers Harold Lester Johnson and William Wilson Morgan. A 13 in (330 mm) telescope and the 82 in (2,100 mm) telescope at McDonald Observatory were used to define the system. The filters that Johnson and Morgan used were Corning 9 863 for U and 3 384 for V. The B filter used a combination of Corning 5 030 and Schott GG 13.

↓ Explore More Topics
In this Dossier

Photometric system in the context of Photometry (astronomy)

In astronomy, photometry, from Greek photo- ("light") and -metry ("measure"), is a technique used in astronomy that is concerned with measuring the flux or intensity of light radiated by astronomical objects. This light is measured through a telescope using a photometer, often made using electronic devices such as a CCD photometer or a photoelectric photometer that converts light into an electric current by the photoelectric effect. When calibrated against standard stars (or other light sources) of known intensity and colour, photometers can measure the brightness or apparent magnitude of celestial objects.

The methods used to perform photometry depend on the wavelength region under study. At its most basic, photometry is conducted by gathering light and passing it through specialized photometric optical bandpass filters, and then capturing and recording the light energy with a photosensitive instrument. Standard sets of passbands (called a photometric system) are defined to allow accurate comparison of observations. A more advanced technique is spectrophotometry that is measured with a spectrophotometer and observes both the amount of radiation and its detailed spectral distribution.

View the full Wikipedia page for Photometry (astronomy)
↑ Return to Menu

Photometric system in the context of T Tauri star

T Tauri stars (TTS) are a class of variable stars that are less than about ten million years old. This class is named after the prototype, T Tauri, a young star in the Taurus star-forming region. They are found near molecular clouds and identified by their optical variability and strong chromospheric lines. T Tauri stars are pre-main-sequence stars in the process of contracting to the main sequence along the Hayashi track, a luminosity–temperature relationship obeyed by infant stars of less than 3 solar masses (M) in the pre-main-sequence phase of stellar evolution. It ends when a star of 0.5 M or larger develops a radiative zone, or when a smaller star commences nuclear fusion on the main sequence.

View the full Wikipedia page for T Tauri star
↑ Return to Menu

Photometric system in the context of Extinction (astronomy)

In astronomy, extinction is the absorption and scattering of electromagnetic radiation by dust and gas between an emitting astronomical object and the observer. Interstellar extinction was first documented as such in 1930 by Robert Julius Trumpler. However, its effects had been noted in 1847 by Friedrich Georg Wilhelm von Struve, and its effect on the colors of stars had been observed by a number of individuals who did not connect it with the general presence of galactic dust. For stars lying near the plane of the Milky Way which are within a few thousand parsecs of the Earth, extinction in the visual band of frequencies (photometric system) is roughly 1.8 magnitudes per kiloparsec.

For Earth-bound observers, extinction arises both from the interstellar medium and the Earth's atmosphere; it may also arise from circumstellar dust around an observed object. Strong extinction in Earth's atmosphere of some wavelength regions (such as X-ray, ultraviolet, and infrared) is overcome by the use of space-based observatories. Since blue light is much more strongly attenuated than red light, extinction causes objects to appear redder than expected; this phenomenon is called interstellar reddening.

View the full Wikipedia page for Extinction (astronomy)
↑ Return to Menu

Photometric system in the context of Photometric-standard star

Photometric-standard stars are a series of stars that have had their light output in various passbands of photometric system measured very carefully. Other objects can be observed using CCD cameras or photoelectric photometers connected to a telescope, and the flux, or amount of light received, can be compared to a photometric-standard star to determine the exact brightness, or stellar magnitude, of the object.

A current set of photometric-standard stars for UBVRI photometry was published by Arlo U. Landolt in 1992 in The Astronomical Journal.

View the full Wikipedia page for Photometric-standard star
↑ Return to Menu

Photometric system in the context of K band (infrared)

In infrared astronomy, the K band is an atmospheric transmission window centered on 2.2 μm (in the near-infrared 136 THz range). HgCdTe-based detectors are typically preferred for observing in this band.

Photometric systems used in astronomy are sets of filters or detectors that have well-defined windows of absorption, based around a central peak detection frequency and where the edges of the detection window are typically reported where sensitivity drops below 50% of peak. Various organizations have defined systems with various peak frequencies and cutoffs in the K band, including K, and KS, and Kdark.

View the full Wikipedia page for K band (infrared)
↑ Return to Menu

Photometric system in the context of Color index

In astronomy, the color index is a simple numerical expression that determines the color of an object, which in the case of a star gives its temperature. The lower the color index, the more blue (or hotter) the object is. Conversely, the larger the color index, the more red (or cooler) the object is. This is a consequence of the inverse logarithmic magnitude scale, in which brighter objects have smaller (more negative) magnitudes than dimmer ones. For comparison, the whitish Sun has a B−V index of 0.656 ± 0.005, whereas the bluish Rigel has a B−V of −0.03 (its B magnitude is 0.09 and its V magnitude is 0.12, B−V = −0.03). Traditionally, the color index uses Vega as a zero point. The blue supergiant Theta Muscae has one of the lowest B−V indices at −0.41, while the red giant and carbon star R Leporis has one of the largest, at +5.74.

To measure the index, one observes the magnitude of an object successively through two different filters, such as U and B, or B and V, where U is sensitive to ultraviolet rays, B is sensitive to blue light, and V is sensitive to visible (green-yellow) light (see also: UBV system). The set of passbands or filters is called a photometric system. The difference in magnitudes found with these filters is called the U−B or B−V color index respectively.

View the full Wikipedia page for Color index
↑ Return to Menu

Photometric system in the context of BL Lacertae

BL Lacertae or BL Lac is a highly variable, extragalactic active galactic nucleus (AGN or active galaxy). It was first discovered by Cuno Hoffmeister in 1929, but was originally thought to be an irregular variable star in the Milky Way galaxy and so was given a variable star designation. In 1968, the "star" was identified by John Schmitt at the David Dunlap Observatory as a bright, variable radio source. A faint trace of a host galaxy was also found. In 1974, Oke and Gunn measured the redshift of BL Lacertae as z = 0.07, corresponding to a recession velocity of 21,000 km/s with respect to the Milky Way. The redshift figure implies that the object lies at a distance of 900 million light years.

Due to its early discovery, BL Lacertae became the prototype and namesake of the class of active galactic nuclei known as "BL Lacertae objects" or "BL Lac objects". This class is distinguished by rapid and high-amplitude brightness variations and by optical spectra devoid (or nearly devoid) of the broad emission lines characteristic of quasars. These characteristics are understood to result from relativistic beaming of emission from a jet of plasma ejected from the vicinity of a supermassive black hole. BL Lac objects are also categorized as a type of blazar.

View the full Wikipedia page for BL Lacertae
↑ Return to Menu

Photometric system in the context of Astronomical filter

An astronomical filter is a telescope accessory consisting of an optical filter used by amateur astronomers to improve the details and contrast of celestial objects, either for viewing or for photography. Research astronomers, on the other hand, use various band-pass filters for photometry on telescopes, in order to obtain measurements which reveal objects' astrophysical properties, such as stellar classification and placement of a celestial body on its Wien curve.

Most astronomical filters work by blocking a specific part of the color spectrum above and below a bandpass, significantly increasing the signal-to-noise ratio of the interesting wavelengths, and so making the object gain detail and contrast. While the color filters transmit certain colors from the spectrum and are usually used for observation of the planets and the Moon, the polarizing filters work by adjusting the brightness, and are usually used for the Moon. The broad-band and narrow-band filters transmit the wavelengths that are emitted by the nebulae (by the hydrogen and oxygen atoms), and are frequently used for reducing the effects of light pollution.

View the full Wikipedia page for Astronomical filter
↑ Return to Menu

Photometric system in the context of List of most luminous stars

This is a list of stars arranged by their absolute magnitude – their intrinsic stellar luminosity. This cannot be observed directly, so instead must be calculated from the apparent magnitude (the brightness as seen from Earth), the distance to each star, and a correction for interstellar extinction. The entries in the list below are further corrected to provide the bolometric magnitude, i.e., integrated over all wavelengths; this relies upon measurements in multiple photometric filters and extrapolation of the stellar spectrum based on the stellar spectral type and/or effective temperature.

Entries give the bolometric luminosity in multiples of the luminosity of the Sun (L) and the bolometric absolute magnitude. As with all magnitude systems in astronomy, the latter scale is logarithmic and inverted i.e., more negative numbers are more luminous.

View the full Wikipedia page for List of most luminous stars
↑ Return to Menu

Photometric system in the context of X Persei

X Persei is a high-mass X-ray binary system located in the constellation Perseus, approximately 950 parsecs away. It is catalogued as 4U 0352+309 in the final Uhuru catalog of X-ray objects.

The conventional star component of X Persei has been classified either as an O-type giant or a B-type main sequence star. It is a Be star, rotating rapidly, and at times surrounded by a disk of expelled material. This qualifies it as a Gamma Cassiopeiae variable, and the visual range is magnitude 6 - 7. In 1989 and 1990, the spectrum of X Persei changed from a Be star to a normal B class star while it faded significantly. This appears to have been caused by the loss of the excretion disk. The disk has since reformed and shows strong emission lines.

View the full Wikipedia page for X Persei
↑ Return to Menu

Photometric system in the context of Zero Point (photometry)

In astronomy, the zero point in a photometric system is defined as the magnitude of an object that produces 1 count per second on the detector. The zero point is used to calibrate a system to the standard magnitude system, as the flux detected from stars will vary from detector to detector. Traditionally, Vega is used as the calibration star for the zero point magnitude in specific pass bands (U, B, and V), although often, an average of multiple stars is used for higher accuracy. It is not often practical to find Vega in the sky to calibrate the detector, so for general purposes, any star may be used in the sky that has a known apparent magnitude.

View the full Wikipedia page for Zero Point (photometry)
↑ Return to Menu

Photometric system in the context of Surface brightness

In astronomy, surface brightness (SB) quantifies the apparent brightness or flux density per unit angular area of a spatially extended object such as a galaxy or nebula, or of the night sky background. An object's surface brightness depends on its surface luminosity density, i.e., its luminosity emitted per unit surface area. In visible and infrared astronomy, surface brightness is often quoted on a magnitude scale, in magnitudes per square arcsecond (MPSAS) in a particular filter band or photometric system.

Measurement of the surface brightnesses of celestial objects is called surface photometry.

View the full Wikipedia page for Surface brightness
↑ Return to Menu