Astronomical filter in the context of "Photometric system"

Play Trivia Questions online!

or

Skip to study material about Astronomical filter in the context of "Photometric system"




⭐ Core Definition: Astronomical filter

An astronomical filter is a telescope accessory consisting of an optical filter used by amateur astronomers to improve the details and contrast of celestial objects, either for viewing or for photography. Research astronomers, on the other hand, use various band-pass filters for photometry on telescopes, in order to obtain measurements which reveal objects' astrophysical properties, such as stellar classification and placement of a celestial body on its Wien curve.

Most astronomical filters work by blocking a specific part of the color spectrum above and below a bandpass, significantly increasing the signal-to-noise ratio of the interesting wavelengths, and so making the object gain detail and contrast. While the color filters transmit certain colors from the spectrum and are usually used for observation of the planets and the Moon, the polarizing filters work by adjusting the brightness, and are usually used for the Moon. The broad-band and narrow-band filters transmit the wavelengths that are emitted by the nebulae (by the hydrogen and oxygen atoms), and are frequently used for reducing the effects of light pollution.

↓ Menu

In this Dossier

Astronomical filter in the context of Lunar eclipse

A lunar eclipse, also called a blood moon, is an astronomical event that occurs when the Moon orbits through Earth's shadow.‍‍ Lunar eclipses occur during eclipse season, when the Moon's orbital plane is approximately in line with Earth and the Sun. The type and length of a lunar eclipse depend on the Moon's proximity to the lunar node.‍‍ In contrast with illusive and short-lasting solar eclipses, lunar eclipses can be observed from anywhere on the night side of Earth and often last for an hour or longer. Lunar eclipses are safe to observe without eye protection.

Lunar eclipses are notable for causing the Moon to appear orange or red. This occurs when the Moon passes through the Earth's umbra, necessitating any sunlight that reaches the Moon to first pass through the Earth's atmosphere. The resulting Rayleigh scattering removes high-wavelength colors such as violet and blue from the incoming light before it reflects off the lunar surface and is observed on Earth.

↑ Return to Menu

Astronomical filter in the context of Color index

In astronomy, the color index is a simple numerical expression that determines the color of an object, which in the case of a star gives its temperature. The lower the color index, the more blue (or hotter) the object is. Conversely, the larger the color index, the more red (or cooler) the object is. This is a consequence of the inverse logarithmic magnitude scale, in which brighter objects have smaller (more negative) magnitudes than dimmer ones. For comparison, the whitish Sun has a B−V index of 0.656 ± 0.005, whereas the bluish Rigel has a B−V of −0.03 (its B magnitude is 0.09 and its V magnitude is 0.12, B−V = −0.03). Traditionally, the color index uses Vega as a zero point. The blue supergiant Theta Muscae has one of the lowest B−V indices at −0.41, while the red giant and carbon star R Leporis has one of the largest, at +5.74.

To measure the index, one observes the magnitude of an object successively through two different filters, such as U and B, or B and V, where U is sensitive to ultraviolet rays, B is sensitive to blue light, and V is sensitive to visible (green-yellow) light (see also: UBV system). The set of passbands or filters is called a photometric system. The difference in magnitudes found with these filters is called the U−B or B−V color index respectively.

↑ Return to Menu