T Tauri star in the context of "Photometric system"

Play Trivia Questions online!

or

Skip to study material about T Tauri star in the context of "Photometric system"

Ad spacer

⭐ Core Definition: T Tauri star

T Tauri stars (TTS) are a class of variable stars that are less than about ten million years old. This class is named after the prototype, T Tauri, a young star in the Taurus star-forming region. They are found near molecular clouds and identified by their optical variability and strong chromospheric lines. T Tauri stars are pre-main-sequence stars in the process of contracting to the main sequence along the Hayashi track, a luminosity–temperature relationship obeyed by infant stars of less than 3 solar masses (M) in the pre-main-sequence phase of stellar evolution. It ends when a star of 0.5 M or larger develops a radiative zone, or when a smaller star commences nuclear fusion on the main sequence.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

T Tauri star in the context of Nebulae

A nebula (Latin for 'cloud, fog'; pl.nebulae or nebulas) is a distinct luminescent part of interstellar medium, which can consist of ionized, neutral, or molecular hydrogen and also cosmic dust. Nebulae are often star-forming regions, such as the Pillars of Creation in the Eagle Nebula. In these regions, the formations of gas, dust, and other materials "clump" together to form denser regions, which attract further matter and eventually become dense enough to form stars. The remaining material is then thought to form planets and other planetary system objects.

Most nebulae are of vast size; some are hundreds of light-years in diameter. A nebula that is visible to the human eye from Earth would appear larger, but no brighter, from close by. The Orion Nebula, the brightest nebula in the sky and occupying an area twice the angular diameter of the full Moon, can be viewed with the naked eye but was missed by early astronomers. Although denser than the space surrounding them, most nebulae are far less dense than any vacuum created on Earth (10 to 10 molecules per cubic centimeter) – a nebular cloud the size of the Earth would have a total mass of only a few kilograms. Earth's air has a density of approximately 10 molecules per cubic centimeter; by contrast, the densest nebulae can have densities of 10 molecules per cubic centimeter. Many nebulae are visible due to fluorescence caused by embedded hot stars, while others are so diffused that they can be detected only with long exposures and special filters. Some nebulae are variably illuminated by T Tauri variable stars.

↑ Return to Menu

T Tauri star in the context of Protoplanetary disk

A protoplanetary disk is a rotating circumstellar disc of dense gas and dust surrounding a young newly formed star, a T Tauri star, or Herbig Ae/Be star. The protoplanetary disk may not be considered an accretion disk; while the two are similar, an accretion disk is hotter and spins much faster; it is also found on black holes, not stars. This process should not be confused with the accretion process thought to build up the planets themselves. Externally illuminated photo-evaporating protoplanetary disks are called proplyds.

↑ Return to Menu

T Tauri star in the context of Pre-main-sequence star

A pre-main-sequence star (also known as a PMS star and PMS object) is a star in the stage when it has not yet reached the main sequence. Earlier in its life, the object is a protostar that grows by acquiring mass from its surrounding envelope of interstellar dust and gas. After the protostar blows away this envelope, it is optically visible, and appears on the stellar birthline in the Hertzsprung-Russell diagram. At this point, the star has acquired nearly all of its mass but has not yet started hydrogen burning (i.e. nuclear fusion of hydrogen). The star continues to contract, its internal temperature rising until it begins hydrogen burning on the zero age main sequence. This period of contraction is the pre-main sequence stage. An observed PMS object can either be a T Tauri star, if it has fewer than 2 solar masses (M), or else a Herbig Ae/Be star, if it has 2 to 8 M. Yet more massive stars have no pre-main-sequence stage because they contract too quickly as protostars. By the time they become visible, the hydrogen in their centers is already fusing and they are main-sequence objects.

The energy source of PMS objects is gravitational contraction, as opposed to hydrogen burning in main-sequence stars. In the Hertzsprung–Russell diagram, pre-main-sequence stars with more than 0.5 M first move vertically downward along Hayashi tracks, then leftward and horizontally along Henyey tracks, until they finally halt at the main sequence. Pre-main-sequence stars with less than 0.5 M contract vertically along the Hayashi track for their entire evolution.

↑ Return to Menu

T Tauri star in the context of HL Tauri

HL Tauri (abbreviated HL Tau) is a young T Tauri star in the constellation Taurus, approximately 450 light-years (140 pc) from Earth in the Taurus Molecular Cloud. The luminosity and effective temperature of HL Tauri imply that its age is less than 100,000 years. At apparent magnitude 15.1, it is too faint to be seen with the unaided eye. It is surrounded by a protoplanetary disk marked by dark bands visible in submillimeter radiation that may indicate a number of planets in the process of formation. It is accompanied by the Herbig–Haro object HH 150, a jet of gas emitted along the rotational axis of the disk that is colliding with nearby interstellar dust and gas.

↑ Return to Menu

T Tauri star in the context of T Tauri

T Tauri is a trinary variable star in the constellation Taurus, the prototype of the T Tauri stars. It was discovered in October 1852 by John Russell Hind. T Tauri appears from Earth amongst the Hyades cluster, not far from ε Tauri, but it is actually 318 light-years behind it and not a member of the cluster. The cloud to the west of the system is NGC 1555, known more commonly as Hind's Variable Nebula.

Although this system is considered to be the prototype of T Tauri stars, a later phase in a protostar's formation, it is a very atypical T Tauri star.

↑ Return to Menu

T Tauri star in the context of Hayashi track

The Hayashi track is a luminosity–temperature relationship obeyed by infant stars of less than 3 M in the pre-main-sequence phase (PMS phase) of stellar evolution. It is named after Japanese astrophysicist Chushiro Hayashi (1920-2010). On the Hertzsprung–Russell diagram, which plots luminosity against temperature, the track is a nearly vertical curve. After a protostar ends its phase of rapid contraction and becomes a T Tauri star, it is extremely luminous. The star continues to contract, but much more slowly. While slowly contracting, the star follows the Hayashi track downwards, becoming several times less luminous but staying at roughly the same surface temperature, until either a radiative zone develops, at which point the star starts following the Henyey track, or nuclear fusion begins, marking its entry onto the main sequence.

The shape and position of the Hayashi track on the Hertzsprung–Russell diagram depends on the star's mass and chemical composition. For solar-mass stars, the track lies at a temperature of roughly 4000 K. Stars on the track are nearly fully convective and have their opacity dominated by hydrogen ions. Stars less than 0.5 M are fully convective even on the main sequence, but their opacity begins to be dominated by Kramers' opacity law after nuclear fusion begins, thus moving them off the Hayashi track. Stars between 0.5 and 3 M develop a radiativezone prior to reaching the main sequence. Stars between 3 and 10 M are fully radiative at the beginning of the pre-main-sequence. Even heavier stars are born onto the main sequence, with no PMS evolution.

↑ Return to Menu