Outer Solar System in the context of 2005 TN53


Outer Solar System in the context of 2005 TN53

Outer Solar System Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Outer Solar System in the context of "2005 TN53"


HINT:

👉 Outer Solar System in the context of 2005 TN53

2005 TN53 is an inclined Neptune trojan leading Neptune's orbit in the outer Solar System, approximately 80 kilometers in diameter. It was first observed on 7 October 2005, by American astronomers Scott Sheppard and Chad Trujillo at Las Campanas Observatory in the Atacama desert of Chile. It was the third such body to be discovered, and the first with a significant orbital inclination, which showed that the population as a whole is very dynamically excited.

↓ Explore More Topics
In this Dossier

Outer Solar System in the context of Solar System

The Solar System consists of the Sun and the bodies that orbit it (most prominently Earth), being a system of masses bound together by gravity. The name comes from Sōl, the Latin name for the Sun. It formed about 4.6 billion years ago when a dense region of a molecular cloud collapsed, creating the Sun and a protoplanetary disc from which the orbiting bodies assembled. The fusion of hydrogen into helium inside the Sun's core releases energy, which is primarily emitted through its outer photosphere. This creates a decreasing temperature gradient across the system. Over 99.86% of the Solar System's mass is located within the Sun.

The most massive objects that orbit the Sun are the eight planets. Closest to the Sun in order of increasing distance are the four terrestrial planetsMercury, Venus, Earth and Mars. These are the planets of the inner Solar System. Earth and Mars are the only planets in the Solar System which orbit within the Sun's habitable zone, where liquid water can exist on the surface. Beyond the frost line at about five astronomical units (AU), are two gas giantsJupiter and Saturn – and two ice giantsUranus and Neptune. These are the planets of the outer Solar System. Jupiter and Saturn possess nearly 90% of the non-stellar mass of the Solar System.

View the full Wikipedia page for Solar System
↑ Return to Menu

Outer Solar System in the context of Theia (planet)

Theia (/ˈθə/ THEE-uh) is a hypothesized ancient planet in the early Solar System which, according to the giant-impact hypothesis, collided with the proto-Earth around 4.5 billion years ago, with some of the resulting ejected debris re-coalescing to form the Moon. Collision simulations support the idea that the two large low-shear-velocity provinces in the Earth's lower mantle may be remnants of Theia. Theia is hypothesized to have been about the size of Mars and likely formed at the L4 or L5 Lagrange points of the Earth's orbit, although some hypotheses debatably suggested it may have formed in the Outer Solar System and later migrated into the Earth's orbit, and might have provided much of Earth's water.

View the full Wikipedia page for Theia (planet)
↑ Return to Menu

Outer Solar System in the context of Early Earth

Early Earth, also known as Proto-Earth, is loosely defined as Earth in the first one billion years — or gigayear (10 y or Ga) — of its geological history, from its initial formation in the young Solar System at about 4.55 billion years ago (Gya), to the end of the Eoarchean era at approximately 3.5 Gya. On the geologic time scale, this comprises all of the Hadean eon and approximately one-third of the Archean eon, starting with the formation of the Earth about 4.6 Gya, and ended at the start of the Paleoarchean era 3.6 Gya.

This period of Earth's history involved the planet's formation from the solar nebula via a process known as accretion, and transition of the Earth's atmosphere from a hydrogen/helium-predominant primary atmosphere collected from the protoplanetary disk to a reductant secondary atmosphere rich in nitrogen, methane and CO2. This time period included intense impact events as the young Proto-Earth, a protoplanet of about 0.63 Earth masses, began clearing the neighborhood, including the early Moon-forming collision with Theia — a Mars-sized co-orbital planet likely perturbed from the L4 Lagrange point — around 0.032 Ga after formation of the Solar System, which resulted in a series of magma oceans and episodes of core formation. After formation of the core, meteorites or comets from the Outer Solar System might have delivered water and other volatile compounds to the Earth's mantle, crust and ancient atmosphere in an intense "late veneer" bombardment. As the Earth's planetary surface eventually cooled and formed a stable but evolving crust during the end-Hadean, most of the water vapor condensed out of the atmosphere and precipitated into a superocean that covered nearly all of the Earth's surface, transforming the initially lava planet Earth of the Hadean into an ocean planet at the early Archean, where the earliest known life forms appeared soon afterwards.

View the full Wikipedia page for Early Earth
↑ Return to Menu

Outer Solar System in the context of Distant minor planet

A distant minor planet, or distant object, is any minor planet found beyond Jupiter in the outer Solar System that is not commonly thought of as an "asteroid". The umbrella term is used by IAU's Minor Planet Center (MPC), which is responsible for the identification, designation and orbit computation of these objects. As of January 2025, the MPC maintains 6101 distant objects in its data base.

Most distant minor planets are trans-Neptunian objects and centaurs, while relatively few are damocloids, Neptune trojans or Uranus trojans. All distant objects have a semi-major axis (average distance from the Sun) greater than 6 AU. This threshold, which is just beyond the orbit of Jupiter (5.2 AU), ensures that the vast majority of "true asteroids" – such as the near-Earth, Mars-crosser, main-belt and Jupiter trojan populations – are excluded from the distant minor planets.

View the full Wikipedia page for Distant minor planet
↑ Return to Menu

Outer Solar System in the context of 1I/ʻOumuamua

1I/ʻOumuamua is the first confirmed interstellar object detected passing through the Solar System. Formally designated 1I/2017 U1, it was discovered by Canadian Robert Weryk using the Pan-STARRS telescope at Haleakalā Observatory, Hawaii, on 19 October 2017, approximately 40 days after it passed its closest point to the Sun on 9 September. When it was first observed, it was about 33 million km (21 million mi; 0.22 AU) from Earth (about 85 times as far away as the Moon) and already heading away from the Sun.

ʻOumuamua is a small object estimated to be between 100 and 1,000 metres (300 and 3,000 ft) long, with its width and thickness both estimated between 35 and 167 metres (115 and 548 ft). It has a red color, like objects in the outer Solar System. Despite its close approach to the Sun, it showed no signs of having a coma, the usual nebula around comets formed when they pass near the Sun. Further, it exhibited non‑gravitational acceleration, potentially due to outgassing or a push from solar radiation pressure. It has a rotation rate similar to the Solar System's asteroids, but many valid models permit it to be unusually more elongated than all but a few other natural bodies observed in the solar system. This feature raised speculation about its origin. Its light curve, assuming little systematic error, presents its motion as "tumbling" rather than "spinning", and moving sufficiently fast relative to the Sun that it is likely of extrasolar origin. Extrapolated and without further deceleration, its path cannot be captured into a solar orbit, so it will eventually leave the Solar System and continue into interstellar space. Its planetary system of origin and age are unknown.

View the full Wikipedia page for 1I/ʻOumuamua
↑ Return to Menu

Outer Solar System in the context of 944 Hidalgo

944 Hidalgo /hɪˈdælɡ/ is a centaur and unusual object on an eccentric, cometary-like orbit between the asteroid belt and the outer Solar System, approximately 52 kilometers (32 miles) in diameter. Discovered by German astronomer Walter Baade in 1920, it is the first member of the dynamical class of centaurs ever to be discovered. The dark D-type object has a rotation period of 10.1 hours and likely an elongated shape. It was named after Mexican revolutionary Miguel Hidalgo y Costilla.

View the full Wikipedia page for 944 Hidalgo
↑ Return to Menu

Outer Solar System in the context of Solid nitrogen

Solid nitrogen is a number of solid forms of the element nitrogen, first observed in 1884. Solid nitrogen is mainly the subject of academic research, but low-temperature, low-pressure solid nitrogen is a substantial component of bodies in the outer Solar System and high-temperature, high-pressure solid nitrogen is a powerful explosive, with higher energy density than any other non-nuclear material.

View the full Wikipedia page for Solid nitrogen
↑ Return to Menu

Outer Solar System in the context of 31824 Elatus

31824 Elatus (/ˈɛlətəs/; provisional designation 1999 UG5) is a very red centaur from the outer Solar System, approximately 48 kilometers (30 miles) in diameter. It was discovered on 29 October 1999, by astronomers of the Catalina Sky Survey at Mount Lemmon Observatory in Arizona, United States. The minor planet was named after Elatus, a centaur from Greek mythology.

View the full Wikipedia page for 31824 Elatus
↑ Return to Menu

Outer Solar System in the context of Outer planet

The Solar System is the gravitationally bound system of the Sun and the masses that orbit it, most prominently its eight planets, of which Earth is one. The system formed about 4.6 billion years ago when a dense region of a molecular cloud collapsed, creating the Sun and a protoplanetary disc from which the orbiting bodies assembled. Inside the Sun's core hydrogen is fused into helium for billions of years, releasing energy which is over even longer periods of time emitted through the Sun's outer layer, the photosphere. This creates the heliosphere and a decreasing temperature gradient across the Solar System.

The mass of the Solar System is by 99.86% almost completely made up of the Sun's mass. The next most massive objects of the system are the eight planets, which by definition dominate the orbits they occupy. Closest to the Sun in order of increasing distance are the four terrestrial planetsMercury, Venus, Earth and Mars. These are the planets of the inner Solar System. Earth and Mars are the only planets in the Solar System which orbit within the Sun's habitable zone, in which the sunlight can make surface water under atmospheric pressure liquid. Beyond the frost line at about five astronomical units (AU), are two gas giantsJupiter and Saturn – and two ice giantsUranus and Neptune. These are the planets of the outer Solar System. Jupiter and Saturn possess nearly 90% of the non-stellar mass of the Solar System.

View the full Wikipedia page for Outer planet
↑ Return to Menu

Outer Solar System in the context of Scott S. Sheppard

Scott Sander Sheppard (born 1977) is an American astronomer and a discoverer of numerous moons, comets and minor planets in the outer Solar System.

He is an astronomer in the Department of Terrestrial Magnetism at the Carnegie Institution for Science in Washington, DC. He attended Oberlin College as an undergraduate, and received his bachelor in physics with honors in 1998. Starting as a graduate student at the Institute for Astronomy at the University of Hawaiʻi at Mānoa, he was credited with the discovery of many small moons of Jupiter, Saturn, Uranus, and Neptune. He has also discovered the first known trailing Neptune trojan, 2008 LC18, the first named leading Neptune trojan, 385571 Otrera, and the first high inclination Neptune trojan, 2005 TN53. These discoveries showed that the Neptune trojan objects are mostly on highly inclined orbits and thus likely captured small bodies from elsewhere in the Solar System.

View the full Wikipedia page for Scott S. Sheppard
↑ Return to Menu

Outer Solar System in the context of (687170) 2011 QF99

(687170) 2011 QF99 is a minor planet from the outer Solar System and the first known Uranus trojan to be discovered. It measures approximately 60 kilometers (37 miles) in diameter, assuming an albedo of 0.05. It was first observed 29 August 2011 during a deep survey of trans-Neptunian objects conducted with the Canada–France–Hawaii Telescope, but its identification as a Uranian trojan was not announced until 2013.

2011 QF99 temporarily orbits near Uranus's L4 Lagrangian point (leading Uranus). It will continue to librate around L4 for at least 70,000 years and will remain a Uranus co-orbital for up to three million years. 2011 QF99 is thus a temporary Uranus trojan—a centaur captured some time ago.

View the full Wikipedia page for (687170) 2011 QF99
↑ Return to Menu