Secondary atmosphere in the context of "Early Earth"

Play Trivia Questions online!

or

Skip to study material about Secondary atmosphere in the context of "Early Earth"

Ad spacer

⭐ Core Definition: Secondary atmosphere

A secondary atmosphere is a planetary atmosphere that did not form directly via accretion during the formation of the planetary system. It is characteristic of terrestrial planets such as the four planets of the Inner Solar System, i.e. Mercury, Venus, Earth (specifically Archean Earth) and Mars, as these planets typically are not massive enough for gravity to long-lastingly retain the compositions of their initial primary atmospheres.

When a protoplanet forms from coalescence of planetesimals, it begins to achieve sufficient mass to also accrete volatile gases from the protoplanetary disk, which envelope the planetary surface forming an atmosphere with primordial ("protosolar") compositions identical/similar to the original circumstellar disk, i.e. the primary atmosphere. Due to ongoing atmospheric escape, outgassing from internal volcanic activities, chemical reactions among the volatiles, and/or meteoric introduction of foreign volatiles from impact events with comets and asteroids, the primary atmosphere will experience gradual alterations to its compositions over time, and a secondary atmosphere forms when the accumulated alterations are significant enough.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Secondary atmosphere in the context of Early Earth

Early Earth, also known as Proto-Earth, is loosely defined as Earth in the first one billion years — or gigayear (10 y or Ga) — of its geological history, from its initial formation in the young Solar System at about 4.55 billion years ago (Gya), to the end of the Eoarchean era at approximately 3.5 Gya. On the geologic time scale, this comprises all of the Hadean eon and approximately one-third of the Archean eon, starting with the formation of the Earth about 4.6 Gya, and ended at the start of the Paleoarchean era 3.6 Gya.

This period of Earth's history involved the planet's formation from the solar nebula via a process known as accretion, and transition of the Earth's atmosphere from a hydrogen/helium-predominant primary atmosphere collected from the protoplanetary disk to a reductant secondary atmosphere rich in nitrogen, methane and CO2. This time period included intense impact events as the young Proto-Earth, a protoplanet of about 0.63 Earth masses, began clearing the neighborhood, including the early Moon-forming collision with Theia — a Mars-sized co-orbital planet likely perturbed from the L4 Lagrange point — around 0.032 Ga after formation of the Solar System, which resulted in a series of magma oceans and episodes of core formation. After formation of the core, meteorites or comets from the Outer Solar System might have delivered water and other volatile compounds to the Earth's mantle, crust and ancient atmosphere in an intense "late veneer" bombardment. As the Earth's planetary surface eventually cooled and formed a stable but evolving crust during the end-Hadean, most of the water vapor condensed out of the atmosphere and precipitated into a superocean that covered nearly all of the Earth's surface, transforming the initially lava planet Earth of the Hadean into an ocean planet at the early Archean, where the earliest known life forms appeared soon afterwards.

↓ Explore More Topics
In this Dossier

Secondary atmosphere in the context of Primary atmosphere

A primary atmosphere, often also called a primordial atmosphere or proto-atmosphere, is an atmosphere of a protoplanet that forms by accretion of gaseous matter from the protoplanetary disk. Gas giant planets including Jupiter, Saturn, have primary atmospheres. Primary atmospheres are very thick compared to secondary atmospheres like the one found on Earth. The primary atmosphere was lost on the terrestrial planets of the Solar System due to a combination of surface temperature, mass of the atoms and the escape velocity of the planet.

↑ Return to Menu