Ejecta in the context of "Theia (planet)"

Play Trivia Questions online!

or

Skip to study material about Ejecta in the context of "Theia (planet)"

Ad spacer

⭐ Core Definition: Ejecta

Ejecta (Latin for 'things thrown out'; sing.ejectum) are particles ejected from an area. In volcanology, in particular, the term refers to particles including pyroclastic materials (tephra) that came out of a volcanic explosion and magma eruption volcanic vent, or crater, has traveled through the air or water, and fell back to the ground surface or ocean floor.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Ejecta in the context of Theia (planet)

Theia (/ˈθə/ THEE-uh) is a hypothesized ancient planet in the early Solar System which, according to the giant-impact hypothesis, collided with the proto-Earth around 4.5 billion years ago, with some of the resulting ejected debris re-coalescing to form the Moon. Collision simulations support the idea that the two large low-shear-velocity provinces in the Earth's lower mantle may be remnants of Theia. Theia is hypothesized to have been about the size of Mars and likely formed at the L4 or L5 Lagrange points of the Earth's orbit, although some hypotheses debatably suggested it may have formed in the Outer Solar System and later migrated into the Earth's orbit, and might have provided much of Earth's water.

↓ Explore More Topics
In this Dossier

Ejecta in the context of Phreatomagmatic eruption

Phreatomagmatic eruptions are volcanic eruptions resulting from interaction between magma and water. They differ from exclusively magmatic eruptions and phreatic eruptions. Unlike phreatic eruptions, the products of phreatomagmatic eruptions contain juvenile (magmatic) clasts. It is common for a large explosive eruption to have magmatic and phreatomagmatic components.

↑ Return to Menu

Ejecta in the context of Mercury (planet)

Mercury is the first planet from the Sun and the smallest in the Solar System. It is a rocky planet with a trace atmosphere and a surface gravity slightly higher than that of Mars. The surface of Mercury is similar to Earth's Moon, being heavily cratered, with an expansive rupes system generated from thrust faults, and bright ray systems, formed by ejecta. Its largest crater, Caloris Planitia, has a diameter of 1,550 km (960 mi), which is about one-third the diameter of the planet (4,880 km or 3,030 mi). Being the most inferior orbiting planet, it always appears close to the sun in Earth's sky, either as a "morning star" or an "evening star". It is the planet with the highest delta-v required for travel from Earth, as well as to and from the other planets in the Solar System.

Mercury's sidereal year (88.0 Earth days) and sidereal day (58.65 Earth days) are in a 3:2 ratio, in a spin–orbit resonance. Consequently, one solar day (sunrise to sunrise) on Mercury lasts for around 176 Earth days: twice the planet's sidereal year. This means that one side of Mercury will remain in sunlight for one Mercurian year of 88 Earth days; while during the next orbit, that side will be in darkness all the time until the next sunrise after another 88 Earth days. Above the planet's surface is an extremely tenuous exosphere and a faint magnetic field just strong enough to deflect solar winds. Combined with its high orbital eccentricity, the planet's surface has widely varying sunlight intensity and temperature, with the equatorial regions ranging from −170 °C (−270 °F) at night to 420 °C (790 °F) during sunlight. Due to its very small axial tilt, the planet's poles are permanently shadowed. This strongly suggests that water ice could be present in the craters.

↑ Return to Menu

Ejecta in the context of Volcanic cone

Volcanic cones are among the simplest volcanic landforms. They are built by ejecta from a volcanic vent, piling up around the vent in the shape of a cone with a central crater. Volcanic cones are of different types, depending upon the nature and size of the fragments ejected during the eruption. Types of volcanic cones include stratocones, spatter cones, tuff cones, and cinder cones.

↑ Return to Menu

Ejecta in the context of Mist

Mist is a natural phenomenon caused by small droplets of water aerosols suspended in the cold air, usually by condensation. Physically, it is an example of a dispersion, most commonly seen where water vapor in warm, moist air meets sudden cooling, such as in exhaled air in the winter, or when hot sauna steam is suddenly released outside. Mist occurs naturally as part of weather, typically when humid air comes into contact with surfaces that are much cooler (e.g. mountains). It can also be created artificially with aerosol spray dispensers if the humidity and temperature conditions are right.

The formation of mist, as of other suspensions, is greatly aided by the presence of nucleation sites on which the suspended water phase can congeal. Thus even such unusual sources of nucleation as small ejecta particulates from volcanic eruptions, releases of strongly polar gases, and even the magnetospheric ions associated with polar lights can in right conditions trigger condensation and mist formation.

↑ Return to Menu

Ejecta in the context of Panspermia

Panspermia (from Ancient Greek πᾶν (pan) 'all' and σπέρμα (sperma) 'seed') is the hypothesis that life exists throughout the universe, distributed by cosmic dust, meteoroids, asteroids, comets, and planetoids, as well as by spacecraft carrying unintended contamination by microorganisms, known as directed panspermia. The theory argues that life did not originate on Earth, but instead evolved somewhere else and seeded life as we know it.

Panspermia comes in many forms, such as radiopanspermia, lithopanspermia, and directed panspermia. Regardless of its form, the theories generally propose that microbes able to survive in outer space (such as certain types of bacteria or plant spores) can become trapped in debris ejected into space after collisions between planets and small Solar System bodies that harbor life. This debris containing the lifeforms is then transported by meteors between bodies in a planetary system, or even across planetary systems within a galaxy. In this way, panspermia studies concentrate not on how life began but on methods that may distribute it within the Universe. This point is often used as a criticism of the theory.

↑ Return to Menu

Ejecta in the context of Ejecta blanket

An ejecta blanket is a generally symmetrical apron of ejecta that surrounds an impact crater; it is layered thickly at the crater's rim and thin to discontinuous at the blanket's outer edge. The impact cratering is one of the basic surface formation mechanisms of the solar system bodies (including the Earth) and the formation and emplacement of ejecta blankets are the fundamental characteristics associated with impact cratering event. The ejecta materials are considered as the transported materials beyond the transient cavity formed during impact cratering regardless of the state of the target materials.

↑ Return to Menu

Ejecta in the context of Ray system

In planetary geology, a ray system comprises radial streaks of fine ejecta thrown out during the formation of an impact crater, looking somewhat like many thin spokes coming from the hub of a wheel. The rays may extend for lengths up to several times the diameter of their originating crater, and are often accompanied by small secondary craters formed by larger chunks of ejecta. Ray systems have been identified on the Moon, Earth (Kamil Crater), Mercury, and some moons of the outer planets. Originally it was thought that they existed only on planets or moons lacking an atmosphere, but more recently they have been identified on Mars in infrared images taken from orbit by 2001 Mars Odyssey's thermal imager.

Rays appear at visible, and in some cases infrared wavelengths, when ejecta are made of material with different reflectivity (i.e., albedo) or thermal properties from the surface on which they are deposited. Typically, visible rays have a higher albedo than the surrounding surface. More rarely an impact will excavate low albedo material, for example basaltic-lava deposits on the lunar maria. Thermal rays, as seen on Mars, are especially apparent at night when slopes and shadows do not influence the infrared energy emitted by the Martian surface.

↑ Return to Menu

Ejecta in the context of Giant-impact hypothesis

The giant-impact hypothesis, sometimes called the Theia Impact, is an astrogeology hypothesis for the formation of the Moon first proposed in 1946 by Canadian geologist Reginald Daly. The hypothesis suggests that the Proto-Earth collided with a Mars-sized co-orbital protoplanet likely from the L4 or L5 Lagrange points of the Earth's orbit approximately 4.5 billion years ago in the early Hadean eon (about 20 to 100 million years after the Solar System formed), and some of the ejected debris from the impact event later re-accreted to form the Moon. The impactor planet is sometimes called Theia, named after the mythical Greek Titan who was the mother of Selene, the goddess of the Moon.

Analysis of lunar rocks published in a 2016 report suggests that the impact might have been a direct hit, causing a fragmentation and thorough mixing of both parent bodies.

↑ Return to Menu