Pan-STARRS in the context of "1I/ʻOumuamua"

Play Trivia Questions online!

or

Skip to study material about Pan-STARRS in the context of "1I/ʻOumuamua"




⭐ Core Definition: Pan-STARRS

The Panoramic Survey Telescope and Rapid Response System (Pan-STARRS1; obs. code: F51 and Pan-STARRS2 obs. code: F52) located at Haleakala Observatory, Hawaii, US, consists of astronomical cameras, telescopes and a computing facility that is surveying the sky for moving or variable objects on a continual basis, and also producing accurate astrometry and photometry of already-detected objects. In January 2019 the second Pan-STARRS data release was announced. At 1.6 petabytes, it is the largest volume of astronomical data ever released.

↓ Menu

👉 Pan-STARRS in the context of 1I/ʻOumuamua

1I/ʻOumuamua is the first confirmed interstellar object detected passing through the Solar System. Formally designated 1I/2017 U1, it was discovered by Canadian Robert Weryk using the Pan-STARRS telescope at Haleakalā Observatory, Hawaii, on 19 October 2017, approximately 40 days after it passed its closest point to the Sun on 9 September. When it was first observed, it was about 33 million km (21 million mi; 0.22 AU) from Earth (about 85 times as far away as the Moon) and already heading away from the Sun.

ʻOumuamua is a small object estimated to be between 100 and 1,000 metres (300 and 3,000 ft) long, with its width and thickness both estimated between 35 and 167 metres (115 and 548 ft). It has a red color, like objects in the outer Solar System. Despite its close approach to the Sun, it showed no signs of having a coma, the usual nebula around comets formed when they pass near the Sun. Further, it exhibited non‑gravitational acceleration, potentially due to outgassing or a push from solar radiation pressure. It has a rotation rate similar to the Solar System's asteroids, but many valid models permit it to be unusually more elongated than all but a few other natural bodies observed in the solar system. This feature raised speculation about its origin. Its light curve, assuming little systematic error, presents its motion as "tumbling" rather than "spinning", and moving sufficiently fast relative to the Sun that it is likely of extrasolar origin. Extrapolated and without further deceleration, its path cannot be captured into a solar orbit, so it will eventually leave the Solar System and continue into interstellar space. Its planetary system of origin and age are unknown.

↓ Explore More Topics
In this Dossier

Pan-STARRS in the context of Space Telescope Science Institute

The Space Telescope Science Institute (STScI) is the science operations center for the Hubble Space Telescope (HST), science operations and mission operations center for the James Webb Space Telescope (JWST), and science operations center for the Nancy Grace Roman Space Telescope. STScI was established in 1981 as a community-based science center that is operated for NASA by the Association of Universities for Research in Astronomy (AURA). STScI's offices are located on the Johns Hopkins University Homewood Campus and in the Rotunda building in Baltimore, Maryland.

In addition to performing continuing science operations of HST and preparing for scientific exploration with JWST and Roman, STScI manages and operates the Mikulski Archive for Space Telescopes (MAST), which holds data from numerous active and legacy missions, including HST, JWST, Kepler, TESS, Gaia, and Pan-STARRS.

↑ Return to Menu

Pan-STARRS in the context of 514107 Kaʻepaokaʻāwela

514107 Kaʻepaokaʻāwela (/kəˌʔɛpə.kə.ʔɑːˈvɛlə/), provisionally designated 2015 BZ509 and nicknamed Bee-Zed, is a small asteroid, approximately 3 km (2 mi) in diameter, in a resonant, co-orbital motion with Jupiter. It is an unusual minor planet in that its orbit is retrograde, which is opposite to the direction of most other bodies in the Solar System. It was discovered on 26 November 2014, by astronomers of the Pan-STARRS survey at Haleakala Observatory on the island of Maui, United States. Kaʻepaokaʻāwela is the first example of an asteroid in a 1:–1 resonance with any of the planets. This type of resonance had only been studied a few years before the object's discovery. One study suggests that it was an interstellar asteroid captured 4.5 billion years ago into an orbit around the Sun.

↑ Return to Menu