Optical filter in the context of Optical path


Optical filter in the context of Optical path

Optical filter Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Optical filter in the context of "Optical path"


⭐ Core Definition: Optical filter

An optical filter is a device that selectively transmits light of different wavelengths, usually implemented as a glass plane or plastic device in the optical path, which are either dyed in the bulk or have interference coatings. The optical properties of filters are completely described by their frequency response, which specifies how the magnitude and phase of each frequency component of an incoming signal is modified by the filter.

Filters mostly belong to one of two categories. The simplest, physically, is the absorptive filter; then there are interference or dichroic filters. Many optical filters are used for optical imaging and are manufactured to be transparent; some used for light sources can be translucent.

↓ Menu
HINT:

In this Dossier

Optical filter in the context of False color

False colors and pseudo colors respectively refers to a group of color rendering methods used to display images in colors which were recorded in the visible or non-visible parts of the electromagnetic spectrum. A false-color image is an image that depicts an object in colors that differ from those a photograph (a true-color image) would show. In this image, colors have been assigned to three different wavelengths that human eyes cannot normally see.

In addition, variants of false colors such as pseudocolors, density slicing, and choropleths are used for information visualization of either data gathered by a single grayscale channel or data not depicting parts of the electromagnetic spectrum (e.g. elevation in relief maps or tissue types in magnetic resonance imaging).

View the full Wikipedia page for False color
↑ Return to Menu

Optical filter in the context of Photometric system

In astronomy, a photometric system is a set of well-defined passbands (or optical filters), with a known sensitivity to incident radiation. The sensitivity usually depends on the optical system, detectors and filters used. For each photometric system a set of primary standard stars is provided.

A commonly adopted standardized photometric system is the Johnson-Morgan or UBV photometric system (1953). At present, there are more than 200 photometric systems.

View the full Wikipedia page for Photometric system
↑ Return to Menu

Optical filter in the context of Polarizer

A polarizer or polariser is an optical filter that lets light waves of a specific polarization pass through while blocking light waves of other polarizations. It can filter a beam of light of undefined or mixed polarization into a beam of well-defined polarization, known as polarized light. Polarizers are used in many optical techniques and instruments. Polarizers find applications in photography and LCD technology. In photography, a polarizing filter can be used to filter out reflections.

The common types of polarizers are linear polarizers and circular polarizers. Polarizers can also be made for other types of electromagnetic waves besides visible light, such as radio waves, microwaves, and X-rays.

View the full Wikipedia page for Polarizer
↑ Return to Menu

Optical filter in the context of Photographic filter

In photography and cinematography, a filter is a camera accessory consisting of an optical filter that can be inserted into the optical path. The filter can be of a square or oblong shape and mounted in a holder accessory, or, more commonly, a glass or plastic disk in a metal or plastic ring frame, which can be screwed into the front of or clipped onto the camera lens.

Filters modify the images recorded. Sometimes they are used to make only subtle changes to images; other times the image would simply not be possible without them. In monochrome photography, coloured filters affect the relative brightness of different colours; red lipstick may be rendered as anything from almost white to almost black with different filters. Others change the colour balance of images, so that photographs under incandescent lighting show colours as they are perceived, rather than with a reddish tinge. There are filters that distort the image in a desired way, diffusing an otherwise sharp image, adding a starry effect, etc. Linear and circular polarising filters reduce oblique reflections from non-metallic surfaces.

View the full Wikipedia page for Photographic filter
↑ Return to Menu

Optical filter in the context of Dichroic filter

An interference filter, dichroic filter, or thin-film filter is an optical filter that reflects some wavelengths (colors) of light and transmits others, with almost no absorption for all wavelengths of interest. An interference filter may be high-pass, low-pass, bandpass, or band-rejection. They are used in scientific applications, as well as in architectural and theatrical lighting.

An interference filter consists of multiple thin layers of dielectric material having different refractive indices. There may also be metallic layers. Interference filters are wavelength-selective by virtue of the interference effects that take place between the incident and reflected waves at the thin-film boundaries. The principle of operation is similar to a Fabry-Perot etalon.

View the full Wikipedia page for Dichroic filter
↑ Return to Menu

Optical filter in the context of Astronomical filter

An astronomical filter is a telescope accessory consisting of an optical filter used by amateur astronomers to improve the details and contrast of celestial objects, either for viewing or for photography. Research astronomers, on the other hand, use various band-pass filters for photometry on telescopes, in order to obtain measurements which reveal objects' astrophysical properties, such as stellar classification and placement of a celestial body on its Wien curve.

Most astronomical filters work by blocking a specific part of the color spectrum above and below a bandpass, significantly increasing the signal-to-noise ratio of the interesting wavelengths, and so making the object gain detail and contrast. While the color filters transmit certain colors from the spectrum and are usually used for observation of the planets and the Moon, the polarizing filters work by adjusting the brightness, and are usually used for the Moon. The broad-band and narrow-band filters transmit the wavelengths that are emitted by the nebulae (by the hydrogen and oxygen atoms), and are frequently used for reducing the effects of light pollution.

View the full Wikipedia page for Astronomical filter
↑ Return to Menu

Optical filter in the context of UBV photometric system

The UBV photometric system (from Ultraviolet, Blue, Visual), also called the Johnson system (or Johnson-Morgan system), is a photometric system usually employed for classifying stars according to their colors. It was the first standardized photometric system. The apparent magnitudes of stars in the system are often used to determine the color indices B−V and U−B, the difference between the B and V magnitudes and the U and B magnitudes respectively. The system is defined using a set of color optical filters in combination with an RMA 1P21 photomultiplier tube.

The choice of colors on the blue end of the spectrum was assisted by the bias that photographic film has for those colors. It was introduced in the 1950s by American astronomers Harold Lester Johnson and William Wilson Morgan. A 13 in (330 mm) telescope and the 82 in (2,100 mm) telescope at McDonald Observatory were used to define the system. The filters that Johnson and Morgan used were Corning 9 863 for U and 3 384 for V. The B filter used a combination of Corning 5 030 and Schott GG 13.

View the full Wikipedia page for UBV photometric system
↑ Return to Menu

Optical filter in the context of Wood's glass

Wood's glass is an optical filter glass invented in 1903 by American physicist Robert Williams Wood (1868–1955), which allows ultraviolet and infrared light to pass through, while blocking most visible light.

View the full Wikipedia page for Wood's glass
↑ Return to Menu

Optical filter in the context of Metamaterials

A metamaterial (from the Greek word μετά meta, meaning 'beyond' or 'after', and the Latin word materia, meaning 'matter' or 'material') is an engineered material whose properties arise not from the chemical composition of its base substances, but from their deliberately designed internal structure. These properties are often rare or absent in naturally occurring materials. Metamaterials are typically fashioned from multiple materials, such as metals and plastics, and arranged in repeating patterns at scales that are smaller than the wavelengths of the phenomena they influence. Their shape, geometry, size, orientation, and arrangement give them their properties of manipulating electromagnetic, acoustic, or seismic waves: by blocking, absorbing, enhancing, or bending waves, to achieve benefits that go beyond what is possible with conventional materials. Those that exhibit a negative index of refraction for particular wavelengths have been the focus of a substantial amount of research.

Potential applications of metamaterials are diverse and include sports equipment, optical filters, medical devices, remote aerospace applications, sensor detection and infrastructure monitoring, smart solar power management, lasers, crowd control, radomes, high-frequency battlefield communication and lenses for high-gain antennas, improving ultrasonic sensors, and even shielding structures from earthquakes. Metamaterials offer the potential to create super-lenses. A form of 'invisibility' was demonstrated using gradient-index materials. Acoustic and seismic metamaterials are also research areas.

View the full Wikipedia page for Metamaterials
↑ Return to Menu