UBV photometric system in the context of Optical filter


UBV photometric system in the context of Optical filter

UBV photometric system Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about UBV photometric system in the context of "Optical filter"


⭐ Core Definition: UBV photometric system

The UBV photometric system (from Ultraviolet, Blue, Visual), also called the Johnson system (or Johnson-Morgan system), is a photometric system usually employed for classifying stars according to their colors. It was the first standardized photometric system. The apparent magnitudes of stars in the system are often used to determine the color indices B−V and U−B, the difference between the B and V magnitudes and the U and B magnitudes respectively. The system is defined using a set of color optical filters in combination with an RMA 1P21 photomultiplier tube.

The choice of colors on the blue end of the spectrum was assisted by the bias that photographic film has for those colors. It was introduced in the 1950s by American astronomers Harold Lester Johnson and William Wilson Morgan. A 13 in (330 mm) telescope and the 82 in (2,100 mm) telescope at McDonald Observatory were used to define the system. The filters that Johnson and Morgan used were Corning 9 863 for U and 3 384 for V. The B filter used a combination of Corning 5 030 and Schott GG 13.

↓ Menu
HINT:

In this Dossier

UBV photometric system in the context of Photometric system

In astronomy, a photometric system is a set of well-defined passbands (or optical filters), with a known sensitivity to incident radiation. The sensitivity usually depends on the optical system, detectors and filters used. For each photometric system a set of primary standard stars is provided.

A commonly adopted standardized photometric system is the Johnson-Morgan or UBV photometric system (1953). At present, there are more than 200 photometric systems.

View the full Wikipedia page for Photometric system
↑ Return to Menu

UBV photometric system in the context of List of brightest stars

This is a list of stars arranged by their apparent magnitude – their brightness as observed from Earth. It includes all stars brighter than magnitude +2.50 in visible light, measured using a V-band filter in the UBV photometric system. Stars in binary systems (or other multiples) are listed by their total or combined brightness if they appear as a single star to the naked eye, or listed separately if they do not. As with all magnitude systems in astronomy, the scale is logarithmic and inverted i.e. lower/more negative numbers are brighter.

Most stars on this list appear bright from Earth because they are nearby, not because they are intrinsically luminous. For a list which compensates for the distances, converting the apparent magnitude to the absolute magnitude, see the list of most luminous stars.

View the full Wikipedia page for List of brightest stars
↑ Return to Menu

UBV photometric system in the context of Vega

Vega is the brightest star in the northern constellation of Lyra. It has the Bayer designation α Lyrae, which is Latinised to Alpha Lyrae and abbreviated Alpha Lyr or α Lyr. This star is relatively close at only 25 light-years (7.7 parsecs) from the Sun, and one of the most luminous stars in the Sun's neighborhood, being intrinsically brighter than any star nearer to the sun. It is the fifth-brightest star in the night sky, and the second-brightest star in the northern celestial hemisphere, after Arcturus.

Vega has been extensively studied by astronomers, leading it to be termed "arguably the next most important star in the sky after the Sun". Vega was the northern pole star around 12000 BCE and will be so again around the year 13724, when its declination will be +84° 14′, less than six degrees from the Pole. Vega was the first star other than the Sun to have its image and spectrum photographed. It was one of the first stars whose distance was estimated through parallax measurements. Vega has functioned as the baseline for calibrating the photometric brightness scale and was one of the stars used to define the zero point for the UBV photometric system.

View the full Wikipedia page for Vega
↑ Return to Menu