Chemical composition in the context of Metamaterials


Chemical composition in the context of Metamaterials

Chemical composition Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Chemical composition in the context of "Metamaterials"


⭐ Core Definition: Chemical composition

A chemical composition specifies the identity, arrangement, and ratio of the chemical elements making up a compound by way of chemical and atomic bonds.

Chemical formulas can be used to describe the relative amounts of elements present in a compound. For example, the chemical formula for water is H2O: this means that each molecule of water is constituted by 2 atoms of hydrogen (H) and 1 atom of oxygen (O). The chemical composition of water may be interpreted as a 2:1 ratio of hydrogen atoms to oxygen atoms. Different types of chemical formulas are used to convey composition information, such as an empirical or molecular formula.

↓ Menu
HINT:

In this Dossier

Chemical composition in the context of Chemical

A chemical substance is a unique form of matter with constant chemical composition and characteristic properties. Chemical substances may take the form of a single element or chemical compounds. If two or more chemical substances can be combined without reacting, they may form a chemical mixture. If a mixture is separated to isolate one chemical substance to a desired degree, the resulting substance is said to be chemically pure.

Chemical substances can exist in several different physical states or phases (e.g. solids, liquids, gases, or plasma) without changing their chemical composition. Substances transition between these phases of matter in response to changes in temperature or pressure. Some chemical substances can be combined or converted into new substances by means of chemical reactions. Chemicals that do not possess this ability are said to be inert.

View the full Wikipedia page for Chemical
↑ Return to Menu

Chemical composition in the context of Mineral

In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid substance with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.

The geological definition of mineral normally excludes compounds that occur only in living organisms. However, some minerals are often biogenic (such as calcite) or organic compounds in the sense of chemistry (such as mellite). Moreover, living organisms often synthesize inorganic minerals (such as hydroxylapatite) that also occur in rocks.

View the full Wikipedia page for Mineral
↑ Return to Menu

Chemical composition in the context of Physical process

Physical changes are changes affecting the form of a chemical substance, but not its chemical composition. Physical changes are used to separate mixtures into their component compounds, but can not usually be used to separate compounds into chemical elements or simpler compounds.

Physical changes occur when objects or substances undergo a change that does not change their chemical composition. This contrasts with the concept of chemical change in which the composition of a substance changes or one or more substances combine or break up to form new substances. In general a physical change is reversible using physical means. For example, salt dissolved in water can be recovered by allowing the water to evaporate.

View the full Wikipedia page for Physical process
↑ Return to Menu

Chemical composition in the context of Mineraloid

A mineraloid is a naturally occurring substance that resembles a mineral, but does not demonstrate the crystallinity of a mineral. Mineraloid substances possess chemical compositions that vary beyond the generally accepted ranges for specific minerals, for example, obsidian is an amorphous glass and not a true crystal; lignite (jet) is derived from the decay of wood under extreme pressure underground; and opal is a mineraloid substance because of its non-crystalline nature. Pearl is a mineraloid substance because the calcite crystals and the aragonite crystals are bonded by an organic material, and naturally occurs without definite proportions of the components.

The first usage of the term mineraloid substance was in 1909, by mineralogist and geologist Julian Niedzwiedzki, in identifying and describing amorphous substances that resemble minerals.

View the full Wikipedia page for Mineraloid
↑ Return to Menu

Chemical composition in the context of Internal energy

The internal energy of a thermodynamic system is the energy of the system as a state function, measured as the quantity of energy necessary to bring the system from its standard internal state to its present internal state of interest, accounting for the gains and losses of energy due to changes in its internal state, including such quantities as magnetization. It excludes the kinetic energy of motion of the system as a whole and the potential energy of position of the system as a whole, with respect to its surroundings and external force fields. It includes the thermal energy, i.e., the constituent particles' kinetic energies of motion relative to the motion of the system as a whole. Without a thermodynamic process, the internal energy of an isolated system cannot change, as expressed in the law of conservation of energy, a foundation of the first law of thermodynamics. The notion has been introduced to describe the systems characterized by temperature variations, temperature being added to the set of state parameters, the position variables known in mechanics (and their conjugated generalized force parameters), in a similar way to potential energy of the conservative fields of force, gravitational and electrostatic. Its author is Rudolf Clausius. Without transfer of matter, internal energy changes equal the algebraic sum of the heat transferred and the work done. In systems without temperature changes, internal energy changes equal the work done by/on the system.

The internal energy cannot be measured absolutely. Thermodynamics concerns changes in the internal energy, not its absolute value. The processes that change the internal energy are transfers, into or out of the system, of substance, or of energy, as heat, or by thermodynamic work. These processes are measured by changes in the system's properties, such as temperature, entropy, volume, electric polarization, and molar constitution. The internal energy depends only on the internal state of the system and not on the particular choice from many possible processes by which energy may pass into or out of the system. It is a state variable, a thermodynamic potential, and an extensive property.

View the full Wikipedia page for Internal energy
↑ Return to Menu

Chemical composition in the context of Skin

Skin is the layer of usually soft, flexible outer tissue covering the body of a vertebrate animal, with three main functions: protection, regulation, and sensation.

Other animal coverings, such as the arthropod exoskeleton, have different developmental origin, structure and chemical composition. The adjective cutaneous means "of the skin" (from Latin cutis 'skin'). In mammals, the skin is an organ of the integumentary system made up of multiple layers of ectodermal tissue and guards the underlying muscles, bones, ligaments, and internal organs. Skin of a different nature exists in amphibians, reptiles, and birds. Skin (including cutaneous and subcutaneous tissues) plays crucial roles in formation, structure, and function of extraskeletal apparatus such as horns of bovids (e.g., cattle) and rhinos, cervids' antlers, giraffids' ossicones, armadillos' osteoderm, and os penis/os clitoris.

View the full Wikipedia page for Skin
↑ Return to Menu

Chemical composition in the context of Impurity

In chemistry and materials science, impurities are chemical substances inside a confined amount of liquid, gas, or solid. They differ from the chemical composition of the material or compound. Firstly, a pure chemical should appear in at least one chemical phase and can also be characterized by its phase diagram. Secondly, a pure chemical should prove to be homogeneous (i.e., a uniform substance that has the same composition throughout the material). The perfect pure chemical will pass all attempts to separate and purify it further. Thirdly, and here we focus on the common chemical definition, it should not contain any trace of any other kind of chemical species. In reality, there are no absolutely 100% pure chemical compounds, as there is always some small amount of contamination.

The levels of impurities in a material are generally defined in relative terms. Standards have been established by various organizations that attempt to define the permitted levels of various impurities in a manufactured product. Strictly speaking, a material's level of purity can only be stated as being more or less pure than some other material.

View the full Wikipedia page for Impurity
↑ Return to Menu

Chemical composition in the context of Mineralogy of Mars

The mineralogy of Mars is the chemical composition of rocks and soil that encompass the surface of Mars. Various orbital crafts have used spectroscopic methods to identify the signature of some minerals. The planetary landers performed concrete chemical analysis of the soil in rocks to further identify and confirm the presence of other minerals. The only samples of Martian rocks that are on Earth are in the form of meteorites. The elemental and atmospheric composition along with planetary conditions is essential in knowing what minerals can be formed from these base parts.

View the full Wikipedia page for Mineralogy of Mars
↑ Return to Menu

Chemical composition in the context of Energy value of coal

The energy value of coal, or fuel content, is the amount of potential energy coal contains that can be converted into heat. This value can be calculated and compared with different grades of coal and other combustible materials, which produce different amounts of heat according to their grade.

While chemistry provides ways of calculating the heating value of a certain amount of a substance, there is a difference between this theoretical value and its application to real coal. The grade of a sample of coal does not precisely define its chemical composition, so calculating the coal's actual usefulness as a fuel requires determining its proximate and ultimate analysis (see "Chemical Composition" below).

View the full Wikipedia page for Energy value of coal
↑ Return to Menu

Chemical composition in the context of Intermediate composition

In igneous petrology, an intermediate composition refers to the chemical composition of a rock that has 51.5–63 wt% SiO2 being an intermediate between felsic and mafic compositions. Typical intermediate rocks include andesite and trachyandesite among volcanic rocks and diorite and granodiorite among plutonic rocks.

View the full Wikipedia page for Intermediate composition
↑ Return to Menu

Chemical composition in the context of Chemicals

In chemistry, substance is a unique form of matter with constant chemical composition and characteristic properties. Chemical substances may take the form of a single element or chemical compounds. If two or more chemical substances can be combined without reacting, they may form a chemical mixture. If a mixture is separated to isolate one chemical substance to a desired degree, the resulting substance is said to be chemically pure.

Chemical substances can exist in several different physical states or phases (e.g. solids, liquids, gases, or plasma) without changing their chemical composition. Substances transition between these phases of matter in response to changes in temperature or pressure. Some chemical substances can be combined or converted into new substances by means of chemical reactions. Chemicals that do not possess this ability are said to be inert.

View the full Wikipedia page for Chemicals
↑ Return to Menu

Chemical composition in the context of Speleology

Speleology (from Ancient Greek σπήλαιον (spḗlaion) 'cave' and -λογία (-logía) 'study of') is the scientific study of caves and other karst features, as well as their composition, structure, physical properties, history, ecology, and the processes by which they form (speleogenesis) and change over time (speleomorphology). The term speleology is also sometimes applied to the recreational activity of exploring caves, but this is more properly known as caving, potholing (British English), or spelunking (United States and Canadian English). Speleology and caving are often connected, as the physical skills required for in situ study are the same.

Speleology is a cross-disciplinary field that combines the knowledge of chemistry, biology, geology, physics, meteorology, and cartography to develop portraits of caves as complex, evolving systems.

View the full Wikipedia page for Speleology
↑ Return to Menu

Chemical composition in the context of Uraninite

Uraninite, also known as pitchblende, is a radioactive, uranium-rich mineral and ore with a chemical composition that is largely UO2 but because of oxidation typically contains variable proportions of U3O8. Radioactive decay of the uranium causes the mineral to contain oxides of lead and trace amounts of helium. It may also contain thorium and rare-earth elements.

View the full Wikipedia page for Uraninite
↑ Return to Menu

Chemical composition in the context of Talc

Talc, or talcum, is a clay mineral composed of hydrated magnesium silicate, with the chemical formula Mg3Si4O10(OH)2. Talc in powdered form, often combined with corn starch, is used as baby powder. This mineral is used as a thickening agent and lubricant. It is an ingredient in ceramics, paints, and roofing material. It is a main ingredient in many cosmetics. It occurs as foliated to fibrous masses, and in an exceptionally rare crystal form. It has a perfect basal cleavage and an uneven flat fracture, and it is foliated with a two-dimensional platy form.

The Mohs scale of mineral hardness, based on scratch hardness comparison, defines value 1 as the hardness of talc, the softest mineral. When scraped on a streak plate, talc produces a white streak, though this indicator is of little importance, because most silicate minerals produce a white streak. Talc is translucent to opaque, with colors ranging from whitish grey to green with a vitreous and pearly luster. Talc is not soluble in water, and is slightly soluble in dilute mineral acids.

View the full Wikipedia page for Talc
↑ Return to Menu