Earthquake engineering in the context of Metamaterials


Earthquake engineering in the context of Metamaterials

Earthquake engineering Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Earthquake engineering in the context of "Metamaterials"


⭐ Core Definition: Earthquake engineering

Earthquake engineering is an interdisciplinary branch of engineering that designs and analyzes structures, such as buildings and bridges, with earthquakes in mind. Its overall goal is to make such structures more resistant to earthquakes. An earthquake (or seismic) engineer aims to construct structures that will not be damaged in minor shaking and will avoid serious damage or collapse in a major earthquake. A properly engineered structure does not necessarily have to be extremely strong or expensive. It has to be properly designed to withstand the seismic effects while sustaining an acceptable level of damage.

↓ Menu
HINT:

👉 Earthquake engineering in the context of Metamaterials

A metamaterial (from the Greek word μετά meta, meaning 'beyond' or 'after', and the Latin word materia, meaning 'matter' or 'material') is an engineered material whose properties arise not from the chemical composition of its base substances, but from their deliberately designed internal structure. These properties are often rare or absent in naturally occurring materials. Metamaterials are typically fashioned from multiple materials, such as metals and plastics, and arranged in repeating patterns at scales that are smaller than the wavelengths of the phenomena they influence. Their shape, geometry, size, orientation, and arrangement give them their properties of manipulating electromagnetic, acoustic, or seismic waves: by blocking, absorbing, enhancing, or bending waves, to achieve benefits that go beyond what is possible with conventional materials. Those that exhibit a negative index of refraction for particular wavelengths have been the focus of a substantial amount of research.

Potential applications of metamaterials are diverse and include sports equipment, optical filters, medical devices, remote aerospace applications, sensor detection and infrastructure monitoring, smart solar power management, lasers, crowd control, radomes, high-frequency battlefield communication and lenses for high-gain antennas, improving ultrasonic sensors, and even shielding structures from earthquakes. Metamaterials offer the potential to create super-lenses. A form of 'invisibility' was demonstrated using gradient-index materials. Acoustic and seismic metamaterials are also research areas.

↓ Explore More Topics
In this Dossier

Earthquake engineering in the context of Column

A column or pillar in architecture and structural engineering is a structural element that transmits, through compression, the weight of the structure above to other structural elements below. In other words, a column is a compression member. The term column applies especially to a large round support (the shaft of the column) with a capital and a base or pedestal, which is made of stone, or appearing to be so. A small wooden or metal support is typically called a post. Supports with a rectangular or other non-round section are usually called piers.

For the purpose of wind or earthquake engineering, columns may be designed to resist lateral forces. Other compression members are often termed "columns" because of the similar stress conditions. Columns are frequently used to support beams or arches on which the upper parts of walls or ceilings rest. In architecture, "column" refers to such a structural element that also has certain proportional and decorative features. These beautiful columns are available in a broad selection of styles and designs in round tapered, round straight, or square shaft styles. A column might also be a decorative element not needed for structural purposes; many columns are engaged, that is to say form part of a wall. A long sequence of columns joined by an entablature is known as a colonnade.

View the full Wikipedia page for Column
↑ Return to Menu

Earthquake engineering in the context of Cross bracing

In construction, cross bracing, also known as herringbone strutting, blocking, bridging, and dwanging, are diagonal supports that intersect to reinforce structures.

Cross bracing is usually seen with two diagonal supports placed in an X-shaped manner. Under lateral force (such as wind or seismic activity) one brace will be under tension while the other is being compressed. In steel construction, steel cables may be used due to their great resistance to tension (although they cannot take any load in compression). The common uses for cross bracing include bridge (side) supports, along with structural foundations. This method of construction maximizes the weight of the load a structure is able to support. It is a usual application when constructing earthquake-safe buildings.

View the full Wikipedia page for Cross bracing
↑ Return to Menu

Earthquake engineering in the context of Applied mechanics

Applied mechanics is the branch of science concerned with the motion of any substance that can be experienced or perceived by humans without the help of instruments. In short, when mechanics concepts surpass being theoretical and are applied and executed, general mechanics becomes applied mechanics. It is this stark difference that makes applied mechanics an essential understanding for practical everyday life. It has numerous applications in a wide variety of fields and disciplines, including but not limited to structural engineering, astronomy, oceanography, meteorology, hydraulics, mechanical engineering, aerospace engineering, nanotechnology, structural design, earthquake engineering, fluid dynamics, planetary sciences, and other life sciences. Connecting research between numerous disciplines, applied mechanics plays an important role in both science and engineering.

Pure mechanics describes the response of bodies (solids and fluids) or systems of bodies to external behavior of a body, in either a beginning state of rest or of motion, subjected to the action of forces. Applied mechanics bridges the gap between physical theory and its application to technology.

View the full Wikipedia page for Applied mechanics
↑ Return to Menu

Earthquake engineering in the context of Tomb of Cyrus

The tomb of Cyrus the Great is located in Pasargadae, which was the first capital city of his Achaemenid Empire and is now an archaeological site in the Fars Province of Iran.

The mausoleum is a significant historical example of earthquake engineering as it is said to be the oldest base-isolated structure in the world, allowing it great resilience against seismic hazards. It is one of the key Iranian UNESCO World Heritage Sites, as part of the archaeological site of Pasargadae.

View the full Wikipedia page for Tomb of Cyrus
↑ Return to Menu