Mutualism (biology) in the context of "Bacteria"

⭐ In the context of bacteria, mutualism is considered…

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Mutualism (biology) in the context of Bacteria

Bacteria are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among the first life forms to appear on Earth, and are present in most of its habitats. Bacteria inhabit the air, soil, water, acidic hot springs, radioactive waste, and the deep biosphere of Earth's crust. Bacteria play a vital role in many stages of the nutrient cycle by recycling nutrients and the fixation of nitrogen from the atmosphere. The nutrient cycle includes the decomposition of dead bodies; bacteria are responsible for the putrefaction stage in this process. In the biological communities surrounding hydrothermal vents and cold seeps, extremophile bacteria provide the nutrients needed to sustain life by converting dissolved compounds, such as hydrogen sulphide and methane, to energy. Bacteria also live in mutualistic, commensal and parasitic relationships with plants and animals. Most bacteria have not been characterised and there are many species that cannot be grown in the laboratory. The study of bacteria is known as bacteriology, a branch of microbiology.

Like all animals, humans carry vast numbers (approximately 10 to 10) of bacteria. Most are in the gut, though there are many on the skin. Most of the bacteria in and on the body are harmless or rendered so by the protective effects of the immune system, and many are beneficial, particularly the ones in the gut. However, several species of bacteria are pathogenic and cause infectious diseases, including cholera, syphilis, anthrax, leprosy, tuberculosis, tetanus and bubonic plague. The most common fatal bacterial diseases are respiratory infections. Antibiotics are used to treat bacterial infections and are also used in farming, making antibiotic resistance a growing problem. Bacteria are important in sewage treatment and the breakdown of oil spills, the production of cheese and yogurt through fermentation, the recovery of gold, palladium, copper and other metals in the mining sector (biomining, bioleaching), as well as in biotechnology, and the manufacture of antibiotics and other chemicals.

↓ Explore More Topics
In this Dossier

Mutualism (biology) in the context of Lichen

A lichen (/ˈlkən/ LIE-kən, UK also /ˈlɪən/ LI-chən) is a hybrid colony of algae or cyanobacteria living symbiotically among filaments of multiple fungus species, along with bacteria embedded in the cortex or "skin", in a mutualistic relationship. Lichens are the lifeform that first brought the term symbiosis (as Symbiotismus) into biological context.

Lichens have since been recognized as important actors in nutrient cycling and producers which many higher trophic feeders feed on, such as reindeer, gastropods, nematodes, mites, and springtails. Lichens have properties different from those of their component organisms. They come in many colors, sizes, and forms and are sometimes plant-like, but are not plants. They may have tiny, leafless branches (fruticose) or flat, leaf-like structures (foliose); they may grow crust-like, adhering tightly to a surface (substrate) like a thick coat of paint (crustose), have a powder-like appearance (leprose), or feature other growth forms.

↑ Return to Menu

Mutualism (biology) in the context of Domestication

Domestication is a multi-generational mutualistic relationship in which an animal species, such as humans or leafcutter ants, takes over control and care of another species, such as sheep or fungi, to obtain from them a steady supply of resources, such as meat, milk, or labor. The process is gradual and geographically diffuse, based on trial and error. Domestication affected genes for behavior in animals, making them less aggressive. In plants, domestication affected genes for morphology, such as increasing seed size and stopping the shattering of cereal seedheads. Such changes both make domesticated organisms easier to handle and reduce their ability to survive in the wild.

The first animal to be domesticated by humans was the dog, as a commensal, at least 15,000 years ago. Other animals, including goats, sheep, and cows, were domesticated around 11,000 years ago. Among birds, the chicken was first domesticated in East Asia, seemingly for cockfighting, some 7,000 years ago. The horse came under domestication around 5,500 years ago in central Asia as a working animal. Among invertebrates, the silkworm and the western honey bee were domesticated over 5,000 years ago for silk and honey, respectively.

↑ Return to Menu

Mutualism (biology) in the context of Symbiosis

Symbiosis is any close and long-term biological interaction between two organisms of different species. In 1879, Heinrich Anton de Bary defined symbiosis as "the living together of unlike organisms". The term is sometimes more exclusively used in a restricted, mutualistic sense, where both symbionts contribute to each other's subsistence. This means that they benefit each other in some way.

Symbiosis is diverse and can be classified in multiple ways. It can be obligate, meaning that one or both of the organisms depend on each other for survival, or facultative, meaning that they can subsist independently. When one organism lives on the surface of another, such as head lice on humans, it is called ectosymbiosis; when one partner lives inside the tissues of another, such as Symbiodinium within coral, it is termed endosymbiosis. Where the interaction reduces both parties' fitness, it is called competition; where just one party's fitness is reduced, it is called amensalism. Where one benefits but the other is largely unaffected, this is termed commensalism. Where one benefits at the other's expense, it is called parasitism. Finally, where both parties benefit, the relationship is described as mutualistic.

↑ Return to Menu

Mutualism (biology) in the context of Cooperation

Cooperation (now much less often written as co-operation in British English and, with a varied usage along time, coöperation) takes place when a group of organisms works or acts together for a collective benefit to the group as opposed to working in competition for selfish individual benefit. In biology, many animal and plant species cooperate both with other members of their own species and with members of other species with whom they have (symbiotic or mutualistic) relationships.

↑ Return to Menu

Mutualism (biology) in the context of Yucca

Yucca (/ˈjʌkə/ YUCK-uh) is both the scientific name and common name for a genus native to North America from Panama to southern Canada. It contains 50 accepted species. In addition to yucca, they are also known as Adam's needle or Spanish-bayonet. The genus is generally classified in the asparagus family in a subfamily with the Agave, though historically it was part of the lily family. The species range from small shrubby plants to tree-like giants, such as the Joshua tree. All yuccas have rosettes of leaves that taper to points and inflorescences with many flowers that are mainly cream white with thick petals. Though adapted to a wide range of climates the plants are xerophytes, ones that specialize in dry living conditions.

The tight relationship between the yucca plants and their pollinators, the yucca moths from the genera Tegeticula and Parategeticula, is a well known example of evolutionary mutualism. They are an important part of the ecology of North American deserts, providing shelter to small animals and creating habitats. The human uses of yuccas include garden plants, as food, and for extracts. The flower petals of various species are eaten as a part of local cuisine, particularly in Central America and Mexico. Historically, the yucca was extensively used for its fibers to make cords, baskets, mats, and sandals. It continues to be used by native peoples for traditional soaps.

↑ Return to Menu

Mutualism (biology) in the context of Host (biology)

In biology and medicine, a host is a larger organism that harbours a smaller organism; whether a parasitic, a mutualistic, or a commensalist guest (symbiont). The guest is typically provided with nourishment and shelter. Examples include animals playing host to parasitic worms (e.g. nematodes), cells harbouring pathogenic (disease-causing) viruses, or a bean plant hosting mutualistic (helpful) nitrogen-fixing bacteria. More specifically in botany, a host plant supplies food resources to micropredators, which have an evolutionarily stable relationship with their hosts similar to ectoparasitism. The host range is the collection of hosts that an organism can use as a partner.

↑ Return to Menu

Mutualism (biology) in the context of Escherichia coli

Escherichia coli (/ˌɛʃəˈrɪkiə ˈkl/ ESH-ə-RIK-ee-ə KOH-lye) is a gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus Escherichia that is commonly found in the lower intestine of warm-blooded organisms. Most E. coli strains are part of the normal microbiota of the gut, where they constitute about 0.1%, along with other facultative anaerobes. These bacteria are mostly harmless or even beneficial to humans. For example, some strains of E. coli benefit their hosts by producing vitamin K2 or by preventing the colonization of the intestine by harmful pathogenic bacteria. These mutually beneficial relationships between E. coli and humans are a type of mutualistic biological relationship—where both the humans and the E. coli are benefitting each other. E. coli is expelled into the environment within fecal matter. The bacterium grows massively in fresh fecal matter under aerobic conditions for three days, but its numbers decline slowly afterwards.

Some serotypes, such as EPEC and ETEC, are pathogenic, causing serious food poisoning in their hosts. Fecal–oral transmission is the major route through which pathogenic strains of the bacterium cause disease. This transmission method is occasionally responsible for food contamination incidents that prompt product recalls. Cells are able to survive outside the body for a limited amount of time, which makes them potential indicator organisms to test environmental samples for fecal contamination. A growing body of research, though, has examined environmentally persistent E. coli which can survive for many days and grow outside a host.

↑ Return to Menu

Mutualism (biology) in the context of Plant to plant communication via mycorrhizal networks

A mycorrhizal network (also known as a common mycorrhizal network or CMN) is an underground network found in forests and other plant communities, created by the hyphae of mycorrhizal fungi joining with plant roots. This network connects individual plants together. Mycorrhizal relationships are most commonly mutualistic, with both partners benefiting, but can be commensal or parasitic, and a single partnership may change between any of the three types of symbiosis at different times. Mycorrhizal networks were discovered in 1997 by Suzanne Simard, professor of forest ecology at the University of British Columbia in Canada. Simard grew up in Canadian forests where her family had made a living as foresters for generations. Her field studies revealed that trees are linked to neighboring trees by an underground network of fungi that resembles the neural networks in the brain. In one study, Simard watched as a Douglas fir that had been injured by insects appeared to send chemical warning signals to a ponderosa pine growing nearby. The pine tree then produced defense enzymes to protect against the insect.

The formation and nature of these networks is context-dependent, and can be influenced by factors such as soil fertility, resource availability, host or mycosymbiont genotype, disturbance and seasonal variation. Some plant species, such as buckhorn plantain, a common lawn and agricultural weed, benefit from mycorrhizal relationships in conditions of low soil fertility, but are harmed in higher soil fertility. Both plants and fungi associate with multiple symbiotic partners at once, and both plants and fungi are capable of preferentially allocating resources to one partner over another.

↑ Return to Menu