Facultative anaerobe in the context of "Escherichia coli"

Play Trivia Questions online!

or

Skip to study material about Facultative anaerobe in the context of "Escherichia coli"

Ad spacer

⭐ Core Definition: Facultative anaerobe

A facultative anaerobic organism is an organism that makes ATP by aerobic respiration if oxygen is present, but is capable of switching to fermentation if oxygen is absent.

Some examples of facultatively anaerobic bacteria are Staphylococcus spp., Escherichia coli, Salmonella, Listeria spp., Shewanella oneidensis and Yersinia pestis. Certain eukaryotes are also facultative anaerobes, including pupfish, fungi such as Saccharomyces cerevisiae and many aquatic invertebrates such as nereid polychaetes.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Facultative anaerobe in the context of Escherichia coli

Escherichia coli (/ˌɛʃəˈrɪkiə ˈkl/ ESH-ə-RIK-ee-ə KOH-lye) is a gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus Escherichia that is commonly found in the lower intestine of warm-blooded organisms. Most E. coli strains are part of the normal microbiota of the gut, where they constitute about 0.1%, along with other facultative anaerobes. These bacteria are mostly harmless or even beneficial to humans. For example, some strains of E. coli benefit their hosts by producing vitamin K2 or by preventing the colonization of the intestine by harmful pathogenic bacteria. These mutually beneficial relationships between E. coli and humans are a type of mutualistic biological relationship—where both the humans and the E. coli are benefitting each other. E. coli is expelled into the environment within fecal matter. The bacterium grows massively in fresh fecal matter under aerobic conditions for three days, but its numbers decline slowly afterwards.

Some serotypes, such as EPEC and ETEC, are pathogenic, causing serious food poisoning in their hosts. Fecal–oral transmission is the major route through which pathogenic strains of the bacterium cause disease. This transmission method is occasionally responsible for food contamination incidents that prompt product recalls. Cells are able to survive outside the body for a limited amount of time, which makes them potential indicator organisms to test environmental samples for fecal contamination. A growing body of research, though, has examined environmentally persistent E. coli which can survive for many days and grow outside a host.

↓ Explore More Topics
In this Dossier

Facultative anaerobe in the context of Aerotolerant anaerobe

Aerotolerant anaerobes use fermentation to produce ATP. They do not use oxygen, but they can protect themselves from reactive oxygen molecules. In contrast, obligate anaerobes can be harmed by reactive oxygen molecules.

There are three categories of anaerobes. Where obligate aerobes require oxygen to grow, obligate anaerobes are damaged by oxygen, aerotolerant organisms cannot use oxygen but tolerate its presence, and facultative anaerobes use oxygen if it is present but can grow without it.

↑ Return to Menu

Facultative anaerobe in the context of Bacillus subtilis

Bacillus subtilis (/bəˈsɪl.əs subˈt.lis/), known also as the hay bacillus or grass bacillus, is a gram-positive, catalase-positive bacterium, found in soil and the gastrointestinal tract of ruminants, humans and marine sponges. Bacillus subtilis is motile and amylase positive. It forms biofilms through the formation of extracellular polymeric matrix containing sugars and proteins. As a member of the genus Bacillus, B. subtilis is rod-shaped, and can form a tough, protective endospore, allowing it to tolerate extreme environmental conditions. B. subtilis has historically been classified as an obligate aerobe, though evidence exists that it is a facultative anaerobe. B. subtilis is considered the best studied Gram-positive bacterium and a model organism to study bacterial chromosome replication and cell differentiation. It is one of the bacterial champions in secreted enzyme production and used on an industrial scale by biotechnology companies.

↑ Return to Menu

Facultative anaerobe in the context of Bacillus cereus

Bacillus cereus is a Gram-positive rod-shaped bacterium commonly found in soil, food, and marine sponges. The specific name, cereus, meaning "waxy" in Latin, refers to the appearance of colonies grown on blood agar. Some strains are harmful to humans and cause foodborne illness due to their spore-forming nature, while other strains can be beneficial as probiotics for animals, and even exhibit mutualism with certain plants. B. cereus bacteria may be aerobes or facultative anaerobes, and like other members of the genus Bacillus, can produce protective endospores. They have a wide range of virulence factors, including phospholipase C, cereulide, sphingomyelinase, metalloproteases, and cytotoxin K, many of which are regulated via quorum sensing. B. cereus strains exhibit flagellar motility.

The Bacillus cereus group comprises seven closely related species: B. cereus sensu stricto (referred to herein as B. cereus), B. anthracis, B. thuringiensis, B. mycoides, B. pseudomycoides, and B. cytotoxicus; or as six species in a Bacillus cereus sensu lato: B. weihenstephanensis, B. mycoides, B. pseudomycoides, B. cereus, B. thuringiensis, and B. anthracis. A phylogenomic analysis combined with average nucleotide identity (ANI) analysis revealed that the B. anthracis species also includes strains annotated as B. cereus and B. thuringiensis.

↑ Return to Menu

Facultative anaerobe in the context of Pseudomonas aeruginosa

Pseudomonas aeruginosa is a common encapsulated, Gram-negative, aerobicfacultatively anaerobic, rod-shaped bacterium that can cause disease in plants and animals, including humans. A species of considerable medical importance, P. aeruginosa is a multidrug resistant pathogen recognized for its ubiquity, its intrinsically advanced antibiotic resistance mechanisms, and its association with serious illnesses – hospital-acquired infections such as ventilator-associated pneumonia and various sepsis syndromes. P. aeruginosa is able to selectively inhibit various antibiotics from penetrating its outer membrane  and has high resistance to several antibiotics. According to the World Health Organization P. aeruginosa poses one of the greatest threats to humans in terms of antibiotic resistance.

The organism is considered opportunistic insofar as serious infection often occurs during existing diseases or conditions – most notably cystic fibrosis and traumatic burns. It generally affects the immunocompromised but can also infect the immunocompetent, as in hot tub folliculitis. Treatment of P. aeruginosa infections can be difficult due to its natural resistance to antibiotics. When more advanced antibiotic drug regimens are needed, adverse effects may result.

↑ Return to Menu