Escherichia in the context of "Escherichia coli"

Play Trivia Questions online!

or

Skip to study material about Escherichia in the context of "Escherichia coli"

Ad spacer

⭐ Core Definition: Escherichia

Escherichia (/ˌɛʃəˈrɪkiə/ ESH-ə-RIK-ee-ə) is a genus of Gram-negative, non-spore-forming, facultatively anaerobic, rod-shaped bacteria from the family Enterobacteriaceae. In those species which are inhabitants of the gastrointestinal tracts of warm-blooded animals, Escherichia species provide a portion of the microbially derived vitamin K for their host. A number of the species of Escherichia are pathogenic. The genus is named after Theodor Escherich, the discoverer of Escherichia coli. Escherichia are facultative aerobes, with both aerobic and anaerobic growth, and an optimum temperature of 37 °C. Escherichia are usually motile by flagella, produce gas from fermentable carbohydrates, and do not decarboxylate lysine or hydrolyze arginine. Species include E. albertii, E. fergusonii, E. hermannii, E. ruysiae, E. marmotae and most notably, the model organism and clinically relevant E. coli. Formerly, Shimwellia blattae and Pseudescherichia vulneris were also classified in this genus.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Escherichia in the context of Escherichia coli

Escherichia coli (/ˌɛʃəˈrɪkiə ˈkl/ ESH-ə-RIK-ee-ə KOH-lye) is a gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus Escherichia that is commonly found in the lower intestine of warm-blooded organisms. Most E. coli strains are part of the normal microbiota of the gut, where they constitute about 0.1%, along with other facultative anaerobes. These bacteria are mostly harmless or even beneficial to humans. For example, some strains of E. coli benefit their hosts by producing vitamin K2 or by preventing the colonization of the intestine by harmful pathogenic bacteria. These mutually beneficial relationships between E. coli and humans are a type of mutualistic biological relationship—where both the humans and the E. coli are benefitting each other. E. coli is expelled into the environment within fecal matter. The bacterium grows massively in fresh fecal matter under aerobic conditions for three days, but its numbers decline slowly afterwards.

Some serotypes, such as EPEC and ETEC, are pathogenic, causing serious food poisoning in their hosts. Fecal–oral transmission is the major route through which pathogenic strains of the bacterium cause disease. This transmission method is occasionally responsible for food contamination incidents that prompt product recalls. Cells are able to survive outside the body for a limited amount of time, which makes them potential indicator organisms to test environmental samples for fecal contamination. A growing body of research, though, has examined environmentally persistent E. coli which can survive for many days and grow outside a host.

↓ Explore More Topics
In this Dossier

Escherichia in the context of Enterobacteriaceae

Enterobacteriaceae is a large family of Gram-negative bacteria. It includes over 30 genera and more than 100 species. Its classification above the level of family is still a subject of debate, but one classification places it in the order Enterobacterales of the class Gammaproteobacteria in the phylum Pseudomonadota. In 2016, the description and members of this family were emended based on comparative genomic analyses by Adeolu et al.

Enterobacteriaceae includes, along with many harmless symbionts, many of the more familiar pathogens, such as Salmonella, Escherichia coli, Klebsiella, and Shigella. Other disease-causing bacteria in this family include Enterobacter and Citrobacter. Members of the Enterobacteriaceae can be trivially referred to as enterobacteria or "enteric bacteria", as several members live in the intestines of animals. In fact, the etymology of the family is enterobacterium with the suffix to designate a family (aceae)—not after the genus Enterobacter (which would be "Enterobacteraceae")—and the type genus is Escherichia.

↑ Return to Menu

Escherichia in the context of Swarming motility

Swarming motility is a rapid (2–10 μm/s) and coordinated translocation of a bacterial population across solid or semi-solid surfaces, and is an example of bacterial multicellularity and swarm behaviour. Swarming motility was first reported by Jorgen Henrichsen and has been mostly studied in genus Serratia, Salmonella, Aeromonas, Bacillus, Yersinia, Pseudomonas, Proteus, Vibrio and Escherichia.

This multicellular behavior has been mostly observed in controlled laboratory conditions and relies on two critical elements: 1) the nutrient composition and 2) viscosity of culture medium (i.e. % agar). One particular feature of this type of motility is the formation of dendritic fractal-like patterns formed by migrating swarms moving away from an initial location. Although the majority of species can produce tendrils when swarming, some species like Proteus mirabilis do form concentric circles motif instead of dendritic patterns.

↑ Return to Menu

Escherichia in the context of Shigella

Shigella is a genus of bacteria that is Gram negative, facultatively anaerobic, non–spore-forming, nonmotile, rod shaped, and is genetically nested within Escherichia. The genus is named after Kiyoshi Shiga, who discovered it in 1897.

Shigella causes disease in primates, but not in other mammals; it is the causative agent of human shigellosis. It is only naturally found in humans and gorillas. During infection, it typically causes dysentery.

↑ Return to Menu