Moons of Saturn in the context of 2010 TK7


Moons of Saturn in the context of 2010 TK7

Moons of Saturn Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Moons of Saturn in the context of "2010 TK7"


⭐ Core Definition: Moons of Saturn

There are 274 known moons of the planet Saturn, the most of any planet in the Solar System. Saturn's moons are diverse in size, ranging from tiny moonlets to Titan, which is larger than the planet Mercury. Three of these moons possess particularly notable features: Titan, Saturn's largest moon (and the second largest moon in the Solar System), has a nitrogen-rich, Earth-like atmosphere and a landscape featuring river networks and hydrocarbon lakes, Enceladus emits jets of ice from its south-polar region and is covered in a deep layer of snow, and Iapetus has contrasting black and white hemispheres as well as an extensive ridge of equatorial mountains which are among the tallest in the solar system.

Twenty-four of the known moons are regular satellites; they have prograde orbits not greatly inclined to Saturn's equatorial plane (except Iapetus, which has a prograde but highly inclined orbit). They include the seven major satellites, four small moons that exist in a trojan orbit with larger moons, and five that act as shepherd moons, of which two are mutually co-orbital. At least two tiny moons orbit inside of Saturn's B and G rings. The relatively large Hyperion is locked in an orbital resonance with Titan. The remaining regular moons orbit near the outer edges of the dense A Ring and the narrow F Ring, and between the major moons Mimas and Enceladus. The regular satellites are traditionally named after Titans and Titanesses or other figures associated with the mythological Saturn.

↓ Menu
HINT:

👉 Moons of Saturn in the context of 2010 TK7

(706765) 2010 TK7 (provisional designation 2010 TK7) is a sub-kilometer Near-Earth asteroid and the first Earth trojan discovered; it precedes Earth in its orbit around the Sun. Trojan objects are most easily conceived as orbiting at a Lagrangian point, a dynamically stable location (where the combined gravitational force acts through the Sun's and Earth's barycenter) 60 degrees ahead of or behind a massive orbiting body, in a type of 1:1 orbital resonance. In reality, they oscillate around such a point. Such objects had previously been observed in the orbits of Mars, Jupiter, Neptune, and the Saturnian moons Tethys and Dione.

2010 TK7 has a diameter of about 300 meters (1,000 ft). Its path oscillates about the Sun–Earth L4 Lagrangian point (60 degrees ahead of Earth), shuttling between its closest approach to Earth and its closest approach to the L3 point (180 degrees from Earth).

↓ Explore More Topics
In this Dossier

Moons of Saturn in the context of John Herschel

Sir John Frederick William Herschel, 1st Baronet KH FRS (/ˈhɜːrʃəl, ˈhɛər-/; 7 March 1792 – 11 May 1871) was an English polymath active as a mathematician, astronomer, chemist, inventor and experimental photographer who invented the blueprint and did botanical work.

Herschel originated the use of the Julian day system in astronomy. He named seven moons of Saturn and four moons of Uranus – the seventh planet, discovered by his father Sir William Herschel. He made many contributions to the science of photography, and investigated colour blindness and the chemical power of ultraviolet rays. His Preliminary Discourse (1831), which advocated an inductive approach to scientific experiment and theory-building, was an important contribution to the philosophy of science.

View the full Wikipedia page for John Herschel
↑ Return to Menu

Moons of Saturn in the context of Satellite system (astronomy)

A satellite system is a set of gravitationally bound objects in orbit around a planetary mass object (incl. sub-brown dwarfs and rogue planets) or minor planet, or its barycenter. Generally speaking, it is a set of natural satellites (moons), although such systems may also consist of bodies such as circumplanetary disks, ring systems, moonlets, minor-planet moons and artificial satellites any of which may themselves have satellite systems of their own (see Subsatellites). Some bodies also possess quasi-satellites that have orbits gravitationally influenced by their primary, but are generally not considered to be part of a satellite system. Satellite systems can have complex interactions including magnetic, tidal, atmospheric and orbital interactions such as orbital resonances and libration. Individually major satellite objects are designated in Roman numerals. Satellite systems are referred to either by the possessive adjectives of their primary (e.g. "Jovian system"), or less commonly by the name of their primary (e.g. "Jupiter system"). Where only one satellite is known, or it is a binary with a common centre of gravity, it may be referred to using the hyphenated names of the primary and major satellite (e.g. the "Earth-Moon system").

Many Solar System objects are known to possess satellite systems, though their origin is still unclear. Notable examples include the Jovian system, with 95 known moons (including the large Galilean moons) and the largest overall, the Saturnian System, with 274 known moons (including Titan and the most visible rings in the Solar System alongside). Both satellite systems are large and diverse, in fact, all of the giant planets of the Solar System possess large satellite systems as well as planetary rings, and it is inferred that this is a general pattern. Several objects farther from the Sun also have satellite systems consisting of multiple moons, including the complex Plutonian system where multiple objects orbit a common center of mass, as well as many asteroids and plutinos. Apart from the Earth-Moon system and Mars' system of two tiny natural satellites, the other terrestrial planets are generally not considered satellite systems, although some have been orbited by artificial satellites originating from Earth.

View the full Wikipedia page for Satellite system (astronomy)
↑ Return to Menu

Moons of Saturn in the context of Cassini probe

Cassini–Huygens (/kəˈsni ˈhɔɪɡənz/ kə-SEE-nee HOY-gənz), commonly called Cassini, was a space-research mission by NASA, the European Space Agency (ESA), and the Italian Space Agency (ASI) to send a space probe to study the planet Saturn and its system, including its rings and natural satellites. The Flagship-class robotic spacecraft comprised both NASA's Cassini space probe and ESA's Huygens lander, which landed on Saturn's largest moon, Titan. Cassini was the fourth space probe to visit Saturn and the first to enter its orbit, where it stayed from 2004 to 2017. The two craft took their names from the astronomers Giovanni Cassini and Christiaan Huygens.

Launched aboard a Titan IVB/Centaur on October 15, 1997, Cassini was active in space for nearly 20 years, spending its final 13 years orbiting Saturn and studying the planet and its system after entering orbit on July 1, 2004.

View the full Wikipedia page for Cassini probe
↑ Return to Menu

Moons of Saturn in the context of Phoebe (moon)

Phoebe (/ˈfbi/ FEE-bee) is the most massive irregular satellite of Saturn with a mean diameter of 213 km (132 mi). It was discovered by William Henry Pickering on 18 March 1899 from photographic plates that had been taken by DeLisle Stewart starting on 16 August 1898 at the Boyden Station of the Carmen Alto Observatory near Arequipa, Peru. It was the first natural satellite to be discovered photographically.

Phoebe was the first target encountered upon the arrival of the Cassini spacecraft in the Saturn system in 2004, and is thus unusually well-studied for an irregular moon of its size. Cassini's trajectory to Saturn and time of arrival were chosen to permit this flyby. After the encounter and its insertion into orbit, Cassini did not go much beyond the orbit of Iapetus.

View the full Wikipedia page for Phoebe (moon)
↑ Return to Menu

Moons of Saturn in the context of Solar System object

The following is a list of Solar System objects by orbit, ordered by increasing distance from the Sun. Most named objects in this list have a diameter of 500 km or more.

View the full Wikipedia page for Solar System object
↑ Return to Menu

Moons of Saturn in the context of Atmosphere of Titan

The atmosphere of Titan is the dense layer of gases surrounding Titan, the largest moon of Saturn. Titan is the only natural satellite of a planet in the Solar System with an atmosphere that is denser than the atmosphere of Earth and is one of two moons with an atmosphere significant enough to drive weather (the other being the atmosphere of Triton). Titan's lower atmosphere is primarily composed of nitrogen (94.2%), methane (5.65%), and hydrogen (0.099%). There are trace amounts of other hydrocarbons, such as ethane, diacetylene, methylacetylene, acetylene, propane, PAHs and of other gases, such as cyanoacetylene, hydrogen cyanide, carbon dioxide, carbon monoxide, cyanogen, acetonitrile, argon and helium. The isotopic study of nitrogen isotopes ratio also suggests acetonitrile may be present in quantities exceeding hydrogen cyanide and cyanoacetylene. The surface pressure is about 50% higher than on Earth at 1.5 bars (147 kPa). This is higher than the pressure at the triple point of methane, which allows there to be liquid methane on the surface in addition to the gaseous methane in the atmosphere. The orange color as seen from space is produced by other more complex chemicals in small quantities, possibly tholins, tar-like organic precipitates.

View the full Wikipedia page for Atmosphere of Titan
↑ Return to Menu

Moons of Saturn in the context of 40-foot telescope

William Herschel's 40-foot telescope, also known as the Great Forty-Foot telescope, was a reflecting telescope constructed between 1785 and 1789 at Observatory House in Slough, England. It used a 48-inch (120 cm) diameter primary mirror with a 40-foot-long (12 m) focal length (hence its name "Forty-Foot"). It was the largest telescope in the world for 50 years. It may have been used to discover Enceladus and Mimas, the 6th and 7th moons of Saturn. It was dismantled in 1840 by Herschel's son John Herschel due to safety concerns; today the original mirror and a 10-foot (3.0 m) section of the tube remain.

View the full Wikipedia page for 40-foot telescope
↑ Return to Menu

Moons of Saturn in the context of Secondary atmosphere

A secondary atmosphere is a planetary atmosphere that did not form directly via accretion during the formation of the planetary system. It is characteristic of terrestrial planets such as the four planets of the Inner Solar System, i.e. Mercury, Venus, Earth (specifically Archean Earth) and Mars, as these planets typically are not massive enough for gravity to long-lastingly retain the compositions of their initial primary atmospheres.

When a protoplanet forms from coalescence of planetesimals, it begins to achieve sufficient mass to also accrete volatile gases from the protoplanetary disk, which envelope the planetary surface forming an atmosphere with primordial ("protosolar") compositions identical/similar to the original circumstellar disk, i.e. the primary atmosphere. Due to ongoing atmospheric escape, outgassing from internal volcanic activities, chemical reactions among the volatiles, and/or meteoric introduction of foreign volatiles from impact events with comets and asteroids, the primary atmosphere will experience gradual alterations to its compositions over time, and a secondary atmosphere forms when the accumulated alterations are significant enough.

View the full Wikipedia page for Secondary atmosphere
↑ Return to Menu

Moons of Saturn in the context of Dione (moon)

Dione (/dˈni/) is the fourth-largest moon of Saturn. With a mean diameter of 1,123 km and a density of about 1.48 g/cm, Dione is composed of an icy mantle and crust overlying a silicate rocky core, with rock and water ice roughly equal in mass. Its trailing hemisphere is marked by large cliffs and scarps called chasmata; the trailing hemisphere is also significantly darker compared to the leading hemisphere.

The moon was discovered by Italian astronomer Giovanni Domenico Cassini in 1684 and is named after the Titaness Dione in Greek mythology. Dione was first imaged up-close by the Voyager 1 space probe in 1980. Later, the Cassini spacecraft made multiple flybys of Dione throughout the 2000s and 2010s as part of its campaign to explore the Saturn system.

View the full Wikipedia page for Dione (moon)
↑ Return to Menu

Moons of Saturn in the context of Tethys (moon)

Tethys (/ˈtθɪs, ˈtɛθɪs/) is the fifth-largest moon of Saturn, measuring about 1,060 km (660 mi) across. It was discovered by Giovanni Domenico Cassini in 1684, and is named after the titan Tethys of Greek mythology.

Tethys has a low density of 0.98 g/cm, the lowest of all the major moons in the Solar System, indicating that it is made of water ice with just a small fraction of rock. This was confirmed by the spectroscopy of its surface, which identified water ice as the dominant surface material. A further, smaller amount of an unidentified dark material is present as well. The surface of Tethys is very bright, the second-brightest of the moons of Saturn after Enceladus, and neutral in color.

View the full Wikipedia page for Tethys (moon)
↑ Return to Menu

Moons of Saturn in the context of Iapetus (moon)

Iapetus (/ˈæpətəs/) is the outermost of Saturn's large moons. With an estimated diameter of 1,469 km (913 mi), it is the third-largest moon of Saturn and the eleventh-largest in the Solar System. Named after the Titan Iapetus from Greek mythology, the moon was discovered in 1671 by Giovanni Domenico Cassini.

A relatively low-density body composed mostly of ice, Iapetus is home to several distinctive and unusual features, such as a striking difference in coloration between its dark leading hemisphere and its bright trailing hemisphere, as well as a massive equatorial ridge that runs three-quarters of the way around the moon.

View the full Wikipedia page for Iapetus (moon)
↑ Return to Menu

Moons of Saturn in the context of Hyperion (moon)

Hyperion /hˈpɪəriən/ is the eighth-largest moon of Saturn. It is distinguished by its highly irregular shape, chaotic rotation, low density, and its unusual sponge-like appearance. It was the first non-rounded moon to be discovered.

View the full Wikipedia page for Hyperion (moon)
↑ Return to Menu

Moons of Saturn in the context of Polydeuces (moon)

Polydeuces /ˌpɒlɪˈdjsz/, also designated Saturn XXXIV, is a small trojan moon of Saturn occupying the trailing L5 Lagrange point of Dione. It was discovered by the Cassini Imaging Science Team in images taken by the Cassini space probe on 21 October 2004. With a mean diameter of about 3 km (1.9 mi), Polydeuces is thought to have a smooth surface coated with fine, icy particles accumulated from the cryovolcanic plumes of Enceladus. In its orbit around Saturn, Polydeuces periodically drifts away from Dione's Lagrange point due to gravitational perturbations by other nearby moons of Saturn. Of the four known trojan moons of Saturn, Polydeuces exhibits the largest displacement from its Lagrange point.

View the full Wikipedia page for Polydeuces (moon)
↑ Return to Menu