Rings of Saturn in the context of "Solar System object"

Play Trivia Questions online!

or

Skip to study material about Rings of Saturn in the context of "Solar System object"

Ad spacer

⭐ Core Definition: Rings of Saturn

Saturn has the most extensive and complex ring system of any planet in the Solar System. The rings consist of particles in orbit around the planet and are made almost entirely of water ice, with a trace component of rocky material. Particles range from micrometers to meters in size. There is no consensus as to when the rings formed: while investigations using theoretical models suggested they formed early in the Solar System's existence, newer data from Cassini suggests a more recent date of formation.

Though light reflected from the rings increases Saturn's apparent brightness, they are not themselves visible from Earth with the naked eye. In 1610, the year after his first observations with a telescope, Galileo Galilei became the first person to observe Saturn's rings, though he could not see them well enough to discern their true nature. In 1655, Christiaan Huygens was the first person to describe them as a disk surrounding Saturn. The concept that Saturn's rings are made up of a series of tiny ringlets can be traced to Pierre-Simon Laplace.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Rings of Saturn in the context of Christiaan Huygens

Christiaan Huygens, Lord of Zeelhem, FRS (/ˈhɡənz/ HY-gənz, US also /ˈhɔɪɡənz/ HOY-gənz; Dutch: [ˈkrɪstijaːn ˈɦœyɣə(n)s] ; also spelled Huyghens; Latin: Hugenius; 14 April 1629 – 8 July 1695) was a Dutch mathematician, physicist, engineer, astronomer, and inventor who is regarded as a key figure in the Scientific Revolution. In physics, Huygens made seminal contributions to optics and mechanics, while as an astronomer he studied the rings of Saturn and discovered its largest moon, Titan. As an engineer and inventor, he improved the design of telescopes and invented the pendulum clock, the most accurate timekeeper for almost 300 years. A talented mathematician and physicist, his works contain the first idealization of a physical problem by a set of mathematical parameters, and the first mathematical and mechanistic explanation of an unobservable physical phenomenon.

Huygens first identified the correct laws of elastic collision in his work De Motu Corporum ex Percussione, completed in 1656 but published posthumously in 1703. In 1659, Huygens derived geometrically the formula in classical mechanics for the centrifugal force in his work De vi Centrifuga, a decade before Isaac Newton. In optics, he is best known for his wave theory of light, which he described in his Traité de la Lumière (1690). His theory of light was initially rejected in favour of Newton's corpuscular theory of light, until Augustin-Jean Fresnel adapted Huygens's principle to give a complete explanation of the rectilinear propagation and diffraction effects of light in 1821. Today this principle is known as the Huygens–Fresnel principle.

↑ Return to Menu

Rings of Saturn in the context of Satellite system (astronomy)

A satellite system is a set of gravitationally bound objects in orbit around a planetary mass object (incl. sub-brown dwarfs and rogue planets) or minor planet, or its barycenter. Generally speaking, it is a set of natural satellites (moons), although such systems may also consist of bodies such as circumplanetary disks, ring systems, moonlets, minor-planet moons and artificial satellites any of which may themselves have satellite systems of their own (see Subsatellites). Some bodies also possess quasi-satellites that have orbits gravitationally influenced by their primary, but are generally not considered to be part of a satellite system. Satellite systems can have complex interactions including magnetic, tidal, atmospheric and orbital interactions such as orbital resonances and libration. Individually major satellite objects are designated in Roman numerals. Satellite systems are referred to either by the possessive adjectives of their primary (e.g. "Jovian system"), or less commonly by the name of their primary (e.g. "Jupiter system"). Where only one satellite is known, or it is a binary with a common centre of gravity, it may be referred to using the hyphenated names of the primary and major satellite (e.g. the "Earth-Moon system").

Many Solar System objects are known to possess satellite systems, though their origin is still unclear. Notable examples include the Jovian system, with 95 known moons (including the large Galilean moons) and the largest overall, the Saturnian System, with 274 known moons (including Titan and the most visible rings in the Solar System alongside). Both satellite systems are large and diverse, in fact, all of the giant planets of the Solar System possess large satellite systems as well as planetary rings, and it is inferred that this is a general pattern. Several objects farther from the Sun also have satellite systems consisting of multiple moons, including the complex Plutonian system where multiple objects orbit a common center of mass, as well as many asteroids and plutinos. Apart from the Earth-Moon system and Mars' system of two tiny natural satellites, the other terrestrial planets are generally not considered satellite systems, although some have been orbited by artificial satellites originating from Earth.

↑ Return to Menu

Rings of Saturn in the context of Enceladus

Enceladus is the sixth-largest moon of Saturn and the 18th largest in the Solar System. It is about 500 kilometres (310 miles) in diameter, about a tenth of that of Saturn's largest moon, Titan. It is covered by clean, freshly deposited snow hundreds of meters thick, making it one of the most reflective bodies of the Solar System. Consequently, its surface temperature at noon reaches only −198 °C (75.1 K; −324.4 °F), far colder than a light-absorbing body would be. Despite its small size, Enceladus has a wide variety of surface features, ranging from old, heavily cratered regions to young, tectonically deformed terrain.

Enceladus was discovered on August 28, 1789, by William Herschel, but little was known about it until the two Voyager spacecrafts, Voyager 1 and Voyager 2, flew by Saturn in 1980 and 1981. In 2005, the spacecraft Cassini started multiple close flybys of Enceladus, revealing its surface and environment in greater detail. In particular, Cassini discovered water-rich plumes venting from the south polar region. Cryovolcanoes near the south pole shoot geyser-like jets of water vapour, molecular hydrogen, other volatiles, and solid material, including sodium chloride crystals and ice particles, into space, totalling about 200 kilograms (440 pounds) per second. More than 100 geysers have been identified. Some of the water vapour falls back as snow, now several hundred metres thick; the rest escapes and supplies most of the material making up Saturn's E ring. According to NASA scientists, the plumes are similar in composition to comets. In 2014, NASA reported that Cassini had found evidence for a large south polar subsurface ocean of liquid water with a thickness of around 10 km (6 mi). The existence of Enceladus's subsurface ocean has since been mathematically modelled and replicated.

↑ Return to Menu

Rings of Saturn in the context of Cassini probe

Cassini–Huygens (/kəˈsni ˈhɔɪɡənz/ kə-SEE-nee HOY-gənz), commonly called Cassini, was a space-research mission by NASA, the European Space Agency (ESA), and the Italian Space Agency (ASI) to send a space probe to study the planet Saturn and its system, including its rings and natural satellites. The Flagship-class robotic spacecraft comprised both NASA's Cassini space probe and ESA's Huygens lander, which landed on Saturn's largest moon, Titan. Cassini was the fourth space probe to visit Saturn and the first to enter its orbit, where it stayed from 2004 to 2017. The two craft took their names from the astronomers Giovanni Cassini and Christiaan Huygens.

Launched aboard a Titan IVB/Centaur on October 15, 1997, Cassini was active in space for nearly 20 years, spending its final 13 years orbiting Saturn and studying the planet and its system after entering orbit on July 1, 2004.

↑ Return to Menu

Rings of Saturn in the context of Circumplanetary dust

A ring system is a disc or torus orbiting an astronomical object that is composed of numerous solid bodies such as dust particles, meteoroids, minor planets, moonlets, or stellar objects.

Ring systems are best known as planetary rings, common components of satellite systems around giant planets such as the rings of Saturn, or circumplanetary disks. But they can also be galactic rings and circumstellar discs, belts of minor planets, such as the asteroid belt or Kuiper belt, or rings of interplanetary dust, such as around the Sun at distances of Mercury, Venus, and Earth, in mean motion resonance with these planets. Evidence suggests that ring systems may also be found around other types of astronomical objects, including moons and brown dwarfs.

↑ Return to Menu

Rings of Saturn in the context of Moons of Saturn

There are 274 known moons of the planet Saturn, the most of any planet in the Solar System. Saturn's moons are diverse in size, ranging from tiny moonlets to Titan, which is larger than the planet Mercury. Three of these moons possess particularly notable features: Titan, Saturn's largest moon (and the second largest moon in the Solar System), has a nitrogen-rich, Earth-like atmosphere and a landscape featuring river networks and hydrocarbon lakes, Enceladus emits jets of ice from its south-polar region and is covered in a deep layer of snow, and Iapetus has contrasting black and white hemispheres as well as an extensive ridge of equatorial mountains which are among the tallest in the solar system.

Twenty-four of the known moons are regular satellites; they have prograde orbits not greatly inclined to Saturn's equatorial plane (except Iapetus, which has a prograde but highly inclined orbit). They include the seven major satellites, four small moons that exist in a trojan orbit with larger moons, and five that act as shepherd moons, of which two are mutually co-orbital. At least two tiny moons orbit inside of Saturn's B and G rings. The relatively large Hyperion is locked in an orbital resonance with Titan. The remaining regular moons orbit near the outer edges of the dense A Ring and the narrow F Ring, and between the major moons Mimas and Enceladus. The regular satellites are traditionally named after Titans and Titanesses or other figures associated with the mythological Saturn.

↑ Return to Menu

Rings of Saturn in the context of Orbital resonance

In celestial mechanics, orbital resonance occurs when orbiting bodies exert regular, periodic gravitational influence on each other, usually because their orbital periods are related by a ratio of small integers. Most commonly, this relationship is found between a pair of objects (binary resonance). The physical principle behind orbital resonance is similar in concept to pushing a child on a swing, whereby the orbit and the swing both have a natural frequency, and the body doing the "pushing" will act in periodic repetition to have a cumulative effect on the motion. Orbital resonances greatly enhance the mutual gravitational influence of the bodies (i.e., their ability to alter or constrain each other's orbits). In most cases, this results in an unstable interaction, in which the bodies exchange momentum and shift orbits until the resonance no longer exists. Under some circumstances, a resonant system can be self-correcting and thus stable. Examples are the 1:2:4 resonance of Jupiter's moons Ganymede, Europa and Io, and the 2:3 resonance between Neptune and Pluto. Unstable resonances with Saturn's inner moons give rise to gaps in the rings of Saturn. The special case of 1:1 resonance between bodies with similar orbital radii causes large planetary system bodies to eject most other bodies sharing their orbits; this is part of the much more extensive process of clearing the neighbourhood, an effect that is used in the current definition of a planet.

A binary resonance ratio in this article should be interpreted as the ratio of number of orbits completed in the same time interval, rather than as the ratio of orbital periods, which would be the inverse ratio. Thus, the 2:3 ratio above means that Pluto completes two orbits in the time it takes Neptune to complete three. In the case of resonance relationships among three or more bodies, either type of ratio may be used (whereby the smallest whole-integer ratio sequences are not necessarily reversals of each other), and the type of ratio will be specified.

↑ Return to Menu