Invariant (physics) in the context of S-duality


Invariant (physics) in the context of S-duality

Invariant (physics) Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Invariant (physics) in the context of "S-duality"


⭐ Core Definition: Invariant (physics)

In theoretical physics, an invariant is an observable of a physical system which remains unchanged under some transformation. Invariance, as a broader term, also applies to the no change of form of physical laws under a transformation, and is closer in scope to the mathematical definition. Invariants of a system are deeply tied to the symmetries imposed by its environment.

Invariance is an important concept in modern theoretical physics, and many theories are expressed in terms of their symmetries and invariants.

↓ Menu
HINT:

👉 Invariant (physics) in the context of S-duality

In theoretical physics, S-duality (short for strong–weak duality, or Sen duality) is an equivalence of two physical theories, which may be either quantum field theories or string theories. S-duality is useful for doing calculations in theoretical physics because it relates a theory in which calculations are difficult to a theory in which they are easier.

In quantum field theory, S-duality generalizes a well established fact from classical electrodynamics, namely the invariance of Maxwell's equations under the interchange of electric and magnetic fields. One of the earliest known examples of S-duality in quantum field theory is Montonen–Olive duality which relates two versions of a quantum field theory called N = 4 supersymmetric Yang–Mills theory. Recent work of Anton Kapustin and Edward Witten suggests that Montonen–Olive duality is closely related to a research program in mathematics called the geometric Langlands program. Another realization of S-duality in quantum field theory is Seiberg duality, which relates two versions of a theory called N=1 supersymmetric Yang–Mills theory.

↓ Explore More Topics
In this Dossier

Invariant (physics) in the context of Speed of light

The speed of light in vacuum, often called simply speed of light and commonly denoted c, is a universal physical constant exactly equal to 299,792,458 metres per second (approximately 1 billion kilometres per hour; 700 million miles per hour). It is exact because, by international agreement, a metre is defined as the length of the path travelled by light in vacuum during a time interval of 1299792458 second. The speed of light is the same for all observers, no matter their relative velocity. It is the upper limit for the speed at which information, matter, or energy can travel through space.

All forms of electromagnetic radiation, including visible light, travel in vacuum at the speed c. For many practical purposes, light and other electromagnetic waves will appear to propagate instantaneously, but for long distances and sensitive measurements, their finite speed has noticeable effects. Much starlight viewed on Earth is from the distant past, allowing humans to study the history of the universe by viewing distant objects. When communicating with distant space probes, it can take hours for signals to travel. In computing, the speed of light fixes the ultimate minimum communication delay. The speed of light can be used in time of flight measurements to measure large distances to extremely high precision.

View the full Wikipedia page for Speed of light
↑ Return to Menu

Invariant (physics) in the context of Special relativity

In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein's 1905 paper, "On the Electrodynamics of Moving Bodies", the theory is presented as being based on just two postulates:

  1. The laws of physics are invariant (identical) in all inertial frames of reference (that is, frames of reference with no acceleration). This is known as the principle of relativity.
  2. The speed of light in vacuum is the same for all observers, regardless of the motion of light source or observer. This is known as the principle of light constancy, or the principle of light speed invariance.

The first postulate was first formulated by Galileo Galilei (see Galilean invariance).

View the full Wikipedia page for Special relativity
↑ Return to Menu

Invariant (physics) in the context of Uniformitarian

Uniformitarianism, also known as the Doctrine of Uniformity or the Uniformitarian Principle, is the assumption that the same natural laws and processes that operate in our present-day scientific observations have always operated in the universe in the past and apply everywhere in the universe. It refers to invariance in the metaphysical principles underpinning science, such as the constancy of cause and effect throughout space-time, but has also been used to describe spatiotemporal invariance of physical laws. Though an unprovable postulate that cannot be verified using the scientific method, some consider that uniformitarianism should be a required first principle in scientific research.

In geology, uniformitarianism has included the gradualistic concept that "the present is the key to the past" and that geological events occur at the same rate now as they have always done, though many modern geologists no longer hold to a strict gradualism. Coined by William Whewell, uniformitarianism was originally proposed in contrast to catastrophism by British naturalists in the late 18th century, starting with the work of the geologist James Hutton in his many books including Theory of the Earth. Hutton's work was later refined by scientist John Playfair and popularised by geologist Charles Lyell's Principles of Geology in 1830. Today, Earth's history is considered to have been a slow, gradual process, punctuated by occasional natural catastrophic events.

View the full Wikipedia page for Uniformitarian
↑ Return to Menu

Invariant (physics) in the context of Gauge theory

In physics, a gauge theory is a type of field theory in which the Lagrangian, and hence the dynamics of the system itself, does not change under local transformations according to certain smooth families of operations (Lie groups). Formally, the Lagrangian is invariant under these transformations.

The term "gauge" refers to any specific mathematical formalism to regulate redundant degrees of freedom in the Lagrangian of a physical system. The transformations between possible gauges, called gauge transformations, form a Lie group—referred to as the symmetry group or the gauge group of the theory. Associated with any Lie group is the Lie algebra of group generators. For each group generator there necessarily arises a corresponding field (usually a vector field) called the gauge field. Gauge fields are included in the Lagrangian to ensure its invariance under the local group transformations (called gauge invariance). When such a theory is quantized, the quanta of the gauge fields are called gauge bosons. If the symmetry group is non-commutative, then the gauge theory is referred to as non-abelian gauge theory, the usual example being the Yang–Mills theory.

View the full Wikipedia page for Gauge theory
↑ Return to Menu

Invariant (physics) in the context of Lorentz invariant

In a relativistic theory of physics, a Lorentz scalar is a scalar expression whose value is invariant under any Lorentz transformation. A Lorentz scalar may be generated from, for example, the scalar product of vectors, or by contracting a tensor. While the components of the contracted quantities may change under Lorentz transformations, the Lorentz scalars remain unchanged.

A simple Lorentz scalar in Minkowski spacetime is the spacetime distance ("length" of their difference) of two fixed events in spacetime. While the "position"-4-vectors of the events change between different inertial frames, their spacetime distance remains invariant under the corresponding Lorentz transformation. Other examples of Lorentz scalars are the "length" of a 4-velocity (see below), or the Ricci curvature at a point in spacetime in general relativity, which is a contraction of the Riemann curvature tensor.

View the full Wikipedia page for Lorentz invariant
↑ Return to Menu

Invariant (physics) in the context of Homogeneity (physics)

In physics, a homogeneous material or system has the same properties at every point; it is uniform without irregularities. A uniform electric field (which has the same strength and the same direction at each point) would be compatible with homogeneity (all points experience the same physics). A material constructed with different constituents can be described as effectively homogeneous in the electromagnetic materials domain, when interacting with a directed radiation field (light, microwave frequencies, etc.).

Mathematically, homogeneity has the connotation of invariance, as all components of the equation have the same degree of value whether or not each of these components are scaled to different values, for example, by multiplication or addition. Cumulative distribution fits this description. "The state of having identical cumulative distribution function or values".

View the full Wikipedia page for Homogeneity (physics)
↑ Return to Menu

Invariant (physics) in the context of Symmetry in quantum mechanics

Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry in physics, invariance, and conservation laws, are fundamentally important constraints for formulating physical theories and models. In practice, they are powerful methods for solving problems and predicting what can happen. While conservation laws do not always give the answer to the problem directly, they form the correct constraints and the first steps to solving a multitude of problems. In application, understanding symmetries can also provide insights on the eigenstates that can be expected. For example, the existence of degenerate states can be inferred by the presence of non-commuting symmetry operators or that the non-degenerate states are also eigenvectors of symmetry operators.

This article outlines the connection between the classical form of continuous symmetries as well as their quantum operators, and relates them to the Lie groups, and relativistic transformations in the Lorentz group and Poincaré group.

View the full Wikipedia page for Symmetry in quantum mechanics
↑ Return to Menu