Minkowski spacetime in the context of "Lorentz invariant"

Play Trivia Questions online!

or

Skip to study material about Minkowski spacetime in the context of "Lorentz invariant"

Ad spacer

⭐ Core Definition: Minkowski spacetime

In physics, Minkowski space (or Minkowski spacetime) (/mɪŋˈkɔːfski, -ˈkɒf-/) is the main mathematical description of spacetime in the absence of gravitation. It combines inertial space and time manifolds into a four-dimensional model.

The model helps show how a spacetime interval between any two events is independent of the inertial frame of reference in which they are recorded. Mathematician Hermann Minkowski developed it from the work of Hendrik Lorentz, Henri Poincaré, and others, and said it "was grown on experimental physical grounds".

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Minkowski spacetime in the context of Lorentz invariant

In a relativistic theory of physics, a Lorentz scalar is a scalar expression whose value is invariant under any Lorentz transformation. A Lorentz scalar may be generated from, for example, the scalar product of vectors, or by contracting a tensor. While the components of the contracted quantities may change under Lorentz transformations, the Lorentz scalars remain unchanged.

A simple Lorentz scalar in Minkowski spacetime is the spacetime distance ("length" of their difference) of two fixed events in spacetime. While the "position"-4-vectors of the events change between different inertial frames, their spacetime distance remains invariant under the corresponding Lorentz transformation. Other examples of Lorentz scalars are the "length" of a 4-velocity (see below), or the Ricci curvature at a point in spacetime in general relativity, which is a contraction of the Riemann curvature tensor.

↓ Explore More Topics
In this Dossier

Minkowski spacetime in the context of Hermann Minkowski

Hermann Minkowski (22 June 1864 – 12 January 1909) was a mathematician and professor at the University of Königsberg, ETH Zürich, and the University of Göttingen, described variously as German, Polish, Lithuanian-German, or Russian. He created and developed the geometry of numbers and elements of convex geometry, and used geometrical methods to solve problems in number theory, mathematical physics, and the theory of relativity.

Minkowski is perhaps best known for his foundational work describing space and time as a four-dimensional space, now known as "Minkowski spacetime", which facilitated geometric interpretations of Albert Einstein's special theory of relativity (1905).

↑ Return to Menu

Minkowski spacetime in the context of Rindler coordinates

Rindler coordinates are a coordinate system used in the context of special relativity to describe the hyperbolic acceleration of a uniformly accelerating reference frame in flat spacetime. In relativistic physics the coordinates of a hyperbolically accelerated reference frame constitute an important and useful coordinate chart representing part of flat Minkowski spacetime. In special relativity, a uniformly accelerating particle undergoes hyperbolic motion, for which a uniformly accelerating frame of reference in which it is at rest can be chosen as its proper reference frame. The phenomena in this hyperbolically accelerated frame can be compared to effects arising in a homogeneous gravitational field. For general overview of accelerations in flat spacetime, see Acceleration (special relativity) and Proper reference frame (flat spacetime).

In this article, the speed of light is defined by c = 1, the inertial coordinates are (X, Y, Z, T), and the hyperbolic coordinates are (x, y, z, t). These hyperbolic coordinates can be separated into two main variants depending on the accelerated observer's position: If the observer is located at time T = 0 at position X = 1/α (with α as the constant proper acceleration measured by a comoving accelerometer), then the hyperbolic coordinates are often called Rindler coordinates with the corresponding Rindler metric. If the observer is located at time T = 0 at position X = 0, then the hyperbolic coordinates are sometimes called Møller coordinates or Kottler–Møller coordinates with the corresponding Kottler–Møller metric. An alternative chart often related to observers in hyperbolic motion is obtained using Radar coordinates which are sometimes called Lass coordinates. Both the Kottler–Møller coordinates as well as Lass coordinates are denoted as Rindler coordinates as well.

↑ Return to Menu