Internet Protocol in the context of Packet (information technology)


Internet Protocol in the context of Packet (information technology)

Internet Protocol Study page number 1 of 3

Play TriviaQuestions Online!

or

Skip to study material about Internet Protocol in the context of "Packet (information technology)"


⭐ Core Definition: Internet Protocol

The Internet Protocol (IP) is the network layer communications protocol in the Internet protocol suite for relaying datagrams across network boundaries. Its routing function enables internetworking, and essentially establishes the Internet.

IP has the task of delivering packets from the source host to the destination host solely based on the IP addresses in the packet headers. For this purpose, IP defines packet structures that encapsulate the data to be delivered. It also defines addressing methods that are used to label the datagram with source and destination information.IP was the connectionless datagram service in the original Transmission Control Program introduced by Vint Cerf and Bob Kahn in 1974, which was complemented by a connection-oriented service that became the basis for the Transmission Control Protocol (TCP). The Internet protocol suite is therefore often referred to as TCP/IP.

↓ Menu
HINT:

In this Dossier

Internet Protocol in the context of Streaming media

Streaming media is multimedia delivered through a network for playback using a media player. Media is transferred in a stream of packets from a server to a client and is rendered in real-time or near real-time; this contrasts with file downloading, a process in which the end-user obtains an entire media file before consuming the content. Streaming is more commonly used for video on demand, streaming television, and music streaming services over the Internet.

While streaming is most commonly associated with multimedia from a remote server over the Internet, it also includes offline multimedia between devices on a local area network. For example, using DLNA and a home server, or in a personal area network between two devices using Bluetooth (which uses radio waves rather than IP). Online streaming was initially popularized by RealNetworks and Microsoft in the 1990s and has since grown to become the globally most popular method for consuming music and videos, with numerous competing subscription services being offered since the 2010s. Audio streaming to wireless speakers, often using Bluetooth, is another use that has become prevalent during that decade. Live streaming is the real-time delivery of content during production, much as live television broadcasts content via television channels.

View the full Wikipedia page for Streaming media
↑ Return to Menu

Internet Protocol in the context of Terrestrial television

Terrestrial television, or over-the-air television (OTA) is a type of television broadcasting in which the content is transmitted via radio waves from the terrestrial (Earth-based) transmitter of a TV station to a TV receiver having an antenna. The term terrestrial is more common in Europe and Latin America, while in Canada and the United States it is called over-the-air or simply broadcast. This type of TV broadcast is distinguished from newer technologies, such as satellite television (direct broadcast satellite or DBS television), in which the signal is transmitted to the receiver from an overhead satellite; cable television, in which the signal is carried to the receiver through a cable; and Internet Protocol television, in which the signal is received over an Internet stream or on a network utilizing the Internet Protocol. Terrestrial television stations broadcast on television channels with frequencies between about 52 and 600 MHz in the VHF and UHF bands. Since radio waves in these bands travel by line of sight, reception is generally limited by the visual horizon to distances of 64–97 kilometres (40–60 miles), although under better conditions and with tropospheric ducting, signals can sometimes be received hundreds of kilometers distant.

Terrestrial television was the first technology used for television broadcasting. The BBC began broadcasting in 1929 and by 1930 many radio stations had a regular schedule of experimental television programmes. However, these early experimental systems had insufficient picture quality to attract the public, due to their mechanical scan technology, and television did not become widespread until after World War II with the advent of electronic scan television technology. The television broadcasting business followed the model of radio networks, with local television stations in cities and towns affiliated with television networks, either commercial (in the US) or government-controlled (in Europe), which provided content. Television broadcasts were in greyscale (called black and white) until the transition to color television in the 1960s.

View the full Wikipedia page for Terrestrial television
↑ Return to Menu

Internet Protocol in the context of Connection-oriented communication

In telecommunications and computer networking, connection-oriented communication is a communication protocol where a communication session or a semi-permanent connection is established before any useful data can be transferred. The established connection ensures that data is delivered in the correct order to the upper communication layer. The alternative is called connectionless communication, such as the datagram mode communication used by Internet Protocol (IP) and User Datagram Protocol (UDP), where data may be delivered out of order, since different network packets are routed independently and may be delivered over different paths.

Connection-oriented communication may be implemented with a circuit switched connection, or a packet-mode virtual circuit connection. In the latter case, it may use either a transport layer virtual circuit protocol such as the Transmission Control Protocol (TCP) protocol, allowing data to be delivered in order. Although the lower-layer switching is connectionless, or it may be a data link layer or network layer switching mode, where all data packets belonging to the same traffic stream are delivered over the same path, and traffic flows are identified by some connection identifier reducing the overhead of routing decisions on a packet-by-packet basis for the network.

View the full Wikipedia page for Connection-oriented communication
↑ Return to Menu

Internet Protocol in the context of Internet protocol suite

The Internet protocol suite, commonly known as TCP/IP, is a framework for organizing the communication protocols used in the Internet and similar computer networks according to functional criteria. The foundational protocols in the suite are the Transmission Control Protocol (TCP), the User Datagram Protocol (UDP), and the Internet Protocol (IP). Early versions of this networking model were known as the Department of Defense (DoD) Internet Architecture Model because the research and development were funded by the Defense Advanced Research Projects Agency (DARPA) of the United States Department of Defense.

The Internet protocol suite provides end-to-end data communication specifying how data should be packetized, addressed, transmitted, routed, and received. This functionality is organized into four abstraction layers, which classify all related protocols according to each protocol's scope of networking. An implementation of the layers for a particular application forms a protocol stack. From lowest to highest, the layers are the link layer, containing communication methods for data that remains within a single network segment (link); the internet layer, providing internetworking between independent networks; the transport layer, handling host-to-host communication; and the application layer, providing process-to-process data exchange for applications.

View the full Wikipedia page for Internet protocol suite
↑ Return to Menu

Internet Protocol in the context of Internetworking

Internetworking is the practice of interconnecting multiple computer networks. Typically, this enables any pair of hosts in the connected networks to exchange messages irrespective of their hardware-level networking technology. The resulting system of interconnected networks is called an internetwork, or simply an internet.

The most notable example of internetworking is the Internet, a network of networks based on many underlying hardware technologies. The Internet is defined by a unified global addressing system, packet format, and routing methods provided by the Internet Protocol.

View the full Wikipedia page for Internetworking
↑ Return to Menu

Internet Protocol in the context of Internet telephony

Voice over Internet Protocol (VoIP), also known as IP telephony, is a set of technologies used primarily for voice communication sessions over Internet Protocol (IP) networks, such as the Internet. VoIP enables voice calls to be transmitted as data packets, facilitating various methods of voice communication, including traditional applications like Skype, Microsoft Teams, Google Voice, and VoIP phones. Regular telephones can also be used for VoIP by connecting them to the Internet via analog telephone adapters (ATAs), which convert traditional telephone signals into digital data packets that can be transmitted over IP networks.

The broader terms Internet telephony, broadband telephony, and broadband phone service specifically refer to the delivery of voice and other communication services, such as fax, SMS, and voice messaging, over the Internet, in contrast to the traditional public switched telephone network (PSTN), commonly known as plain old telephone service (POTS).

View the full Wikipedia page for Internet telephony
↑ Return to Menu

Internet Protocol in the context of Fixed-line

A landline, or fixed line, is telephone service provided to a subscriber via cable or wire, i.e. metal conductors or optical fiber. The term differentiates a telephone service from the now ubiquitous wireless service. A landline allows multiple telephones sets to be connected simultaneously to the same line, and is loosely described as plain old telephone service (POTS).

Landline services are traditionally provided via the outside plant of a telephone company, consisting of analogue copper wire originating from a telephone company's central office, or wirencenter. Landline service often includes services that use Internet Protocol via broadband services.

View the full Wikipedia page for Fixed-line
↑ Return to Menu

Internet Protocol in the context of Public switched telephone network

The public switched telephone network (PSTN) is the aggregate of the world's telephone networks that are operated by national, regional, or local telephony operators. It provides infrastructure and services for public telephony. The PSTN consists of telephone lines, fiber-optic cables, microwave transmission links, cellular networks, communications satellites, and undersea telephone cables interconnected by switching centers, such as central offices, network tandems, and international gateways, which allow telephone users to communicate with each other.

Originally a network of fixed-line analog telephone systems, the PSTN is now predominantly digital in its core network and includes terrestrial cellular, satellite, and landline systems. These interconnected networks enable global communication, allowing calls to be made to and from nearly any telephone worldwide. Many of these networks are progressively transitioning to Internet Protocol to carry their telephony traffic.

View the full Wikipedia page for Public switched telephone network
↑ Return to Menu

Internet Protocol in the context of Byte

The byte is a unit of digital information that most commonly consists of eight bits. Historically, the byte was the number of bits used to encode a single character of text in a computer and for this reason it is the smallest addressable unit of memory in many computer architectures. To disambiguate arbitrarily sized bytes from the common 8-bit definition, network protocol documents such as the Internet Protocol (RFC 791) refer to an 8-bit byte as an octet. Those bits in an octet are usually counted with numbering from 0 to 7 or 7 to 0 depending on the bit endianness.

The size of the byte has historically been hardware-dependent and no definitive standards existed that mandated the size. Sizes from 1 to 48 bits have been used. The six-bit character code was an often-used implementation in early encoding systems, and computers using six-bit and nine-bit bytes were common in the 1960s. These systems often had memory words of 12, 18, 24, 30, 36, 48, or 60 bits, corresponding to 2, 3, 4, 5, 6, 8, or 10 six-bit bytes, and persisted, in legacy systems, into the twenty-first century. In this era, bit groupings in the instruction stream were often referred to as syllables or slab, before the term byte became common.

View the full Wikipedia page for Byte
↑ Return to Menu

Internet Protocol in the context of Internet Protocol television

Internet Protocol television (IPTV), also called TV over broadband, is the service delivery of television over Internet Protocol (IP) networks. Usually sold and run by a telecom provider, it consists of broadcast live television that is streamed over the Internet (multicast) — in contrast to delivery through traditional terrestrial, satellite, and cable transmission formats — as well as video on demand services for watching or replaying content (unicast).

IPTV broadcasts started gaining usage during the 2000s alongside the rising use of broadband-based internet connections. It is often provided bundled with internet access services by ISPs to subscribers and runs in a closed network. IPTV normally requires the use of a set-top box, which receives the encoded television content in the MPEG transport stream via IP multicast, and converts the packets to be watched on a TV set or other kind of display. It is distinct from over-the-top (OTT) services, which are based on a direct one-to-one transmission mechanism.

View the full Wikipedia page for Internet Protocol television
↑ Return to Menu

Internet Protocol in the context of Domain Name Service

The Domain Name System (DNS) is a hierarchical and distributed name service that provides a naming system for computers, services, and other resources on the Internet or other Internet Protocol (IP) networks. It associates various information with domain names (identification strings) assigned to each of the associated entities. Most prominently, it translates readily memorized domain names to the numerical IP addresses needed for locating and identifying computer services and devices with the underlying network protocols. The Domain Name System has been an essential component of the functionality of the Internet since 1985.

The Domain Name System delegates the responsibility of assigning domain names and mapping those names to Internet resources by designating authoritative name servers for each domain. Network administrators may delegate authority over subdomains of their allocated name space to other name servers. This mechanism provides distributed and fault-tolerant service and was designed to avoid a single large central database. In addition, the DNS specifies the technical functionality of the database service that is at its core. It defines the DNS protocol, a detailed specification of the data structures and data communication exchanges used in the DNS, as part of the Internet protocol suite.

View the full Wikipedia page for Domain Name Service
↑ Return to Menu

Internet Protocol in the context of Connectionless communication

Connectionless communication, often referred to as CL-mode communication, is a data transmission method used in packet switching networks, using data packets that are frequently called datagrams, in which each data packet is individually addressed and routed based on information carried in each packet, rather than in the setup information of a prearranged, fixed data channel as in connection-oriented communication. Connectionless protocols are usually described as stateless protocols, the Internet Protocol (IP) and User Datagram Protocol (UDP) are examples.

View the full Wikipedia page for Connectionless communication
↑ Return to Menu

Internet Protocol in the context of User Datagram Protocol

In computer networking, the User Datagram Protocol (UDP) is one of the core communication protocols of the Internet protocol suite used to send messages (transported as datagrams in packets) to other hosts on an Internet Protocol (IP) network. Within an IP network, UDP does not require prior communication to set up communication channels or data paths.

UDP is a connectionless protocol, meaning that messages are sent without negotiating a connection and that UDP does not keep track of what it has sent. UDP provides checksums for data integrity, and port numbers for addressing different functions at the source and destination of the datagram. It has no handshaking dialogues and thus exposes the user's program to any unreliability of the underlying network; there is no guarantee of delivery, ordering, or duplicate protection. If error-correction facilities are needed at the network interface level, an application may instead use Transmission Control Protocol (TCP) or Stream Control Transmission Protocol (SCTP) which are designed for this purpose.

View the full Wikipedia page for User Datagram Protocol
↑ Return to Menu

Internet Protocol in the context of Transmission Control Protocol

The Transmission Control Protocol (TCP) is one of the main protocols of the Internet protocol suite. It originated in the initial network implementation in which it complemented the Internet Protocol (IP). Therefore, the entire suite is commonly referred to as TCP/IP. TCP provides reliable, ordered, and error-checked delivery of a stream of octets (bytes) between applications running on hosts communicating via an IP network. Major internet applications such as the World Wide Web, email, remote administration, file transfer and streaming media rely on TCP, which is part of the transport layer of the TCP/IP suite. SSL/TLS often runs on top of TCP. Today, TCP remains a core protocol for most Internet communication, ensuring reliable data transfer across diverse networks.

TCP is connection-oriented, meaning that sender and receiver firstly need to establish a connection based on agreed parameters; they do this through a three-way handshake procedure. The server must be listening (passive open) for connection requests from clients before a connection is established. Three-way handshake (active open), retransmission, and error detection adds to reliability but lengthens latency. Applications that do not require reliable data stream service may use the User Datagram Protocol (UDP) instead, which provides a connectionless datagram service that prioritizes time over reliability. TCP employs network congestion avoidance. However, there are vulnerabilities in TCP, including denial of service, connection hijacking, TCP veto, and reset attack.

View the full Wikipedia page for Transmission Control Protocol
↑ Return to Menu