Identifier (computer languages) in the context of Modular programming


Identifier (computer languages) in the context of Modular programming

Identifier (computer languages) Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Identifier (computer languages) in the context of "Modular programming"


⭐ Core Definition: Identifier (computer languages)

In computer programming languages, an identifier is a lexical token (also called a symbol, but not to be confused with the symbol primitive data type) that names the language's entities. Some of the kinds of entities an identifier might denote include variables, data types, labels, subroutines, and modules.

↓ Menu
HINT:

In this Dossier

Identifier (computer languages) in the context of Functional programming

In computer science, functional programming is a programming paradigm where programs are constructed by applying and composing functions. It is a declarative programming paradigm in which function definitions are trees of expressions that map values to other values, rather than a sequence of imperative statements which update the running state of the program.

In functional programming, functions are treated as first-class citizens, meaning that they can be bound to names (including local identifiers), passed as arguments, and returned from other functions, just as any other data type can. This allows programs to be written in a declarative and composable style, where small functions are combined in a modular manner.

View the full Wikipedia page for Functional programming
↑ Return to Menu

Identifier (computer languages) in the context of Naming convention (programming)

In computer programming, a naming convention is a set of rules for choosing the character sequence to be used for identifiers which denote variables, types, functions, and other entities in source code and documentation.

Reasons for using a naming convention (as opposed to allowing programmers to choose any character sequence) include the following:

View the full Wikipedia page for Naming convention (programming)
↑ Return to Menu

Identifier (computer languages) in the context of Enumerated types

In computer programming, an enumerated type (also called enumeration, enum, or factor in the R programming language, a condition-name in the COBOL programming language, a status variable in the JOVIAL programming language, an ordinal in the PL/I programming language, and a categorical variable in statistics) is a data type consisting of a set of named values called elements, members, enumeral, or enumerators of the type. The enumerator names are usually identifiers that behave as constants in the language. An enumerated type can be seen as a degenerate tagged union of unit type. A variable that has been declared as having an enumerated type can be assigned any of the enumerators as a value. In other words, an enumerated type has values that are different from each other, and that can be compared and assigned, but are not generally specified by the programmer as having any particular concrete representation in the computer's memory; compilers and interpreters can represent them arbitrarily.
Cite error: There are <ref group=lower-alpha> tags or {{efn}} templates on this page, but the references will not show without a {{reflist|group=lower-alpha}} template or {{notelist}} template (see the help page).

View the full Wikipedia page for Enumerated types
↑ Return to Menu

Identifier (computer languages) in the context of Constant (computer science)

In computer programming, a constant is a value that is not altered by the program during normal execution. When associated with an identifier, a constant is said to be "named," although the terms "constant" and "named constant" are often used interchangeably. This is contrasted with a variable, which is an identifier with a value that can be changed during normal execution. To simplify, constants' values remains, while the values of variables varies, hence both their names.

Constants are useful for both programmers and compilers: for programmers, they are a form of self-documenting code and allow reasoning about correctness, while for compilers, they allow compile-time and run-time checks that verify that constancy assumptions are not violated, and allow or simplify some compiler optimizations.

View the full Wikipedia page for Constant (computer science)
↑ Return to Menu

Identifier (computer languages) in the context of Struct (C programming language)

In the C programming language, struct is the keyword used to define a composite, a.k.a. record, data type – a named set of values that occupy a block of memory. It allows for the different values to be accessed via a single identifier, often a pointer. A struct can contain other data types so is used for mixed-data-type records. For example, a bank customer struct might contain fields for the customer's name, address, telephone number, and balance.

A struct occupies a contiguous block of memory, usually delimited (sized) by word-length boundaries. It corresponds to the similarly named feature available in some assemblers for Intel processors. Being a block of contiguous memory, each field within a struct is located at a certain fixed offset from the start.

View the full Wikipedia page for Struct (C programming language)
↑ Return to Menu

Identifier (computer languages) in the context of Attribute (computing)

In object-oriented programming, an attribute is a specification that defines a property of an object, element, or file. It may also refer to or set the specific value for a given instance of such. For clarity, attributes should more correctly be considered metadata. An attribute is frequently and generally a property of a property. However, in actual usage, the term attribute can and is often treated as equivalent to a property depending on the technology being discussed. An attribute of an object usually consists of a name and a value. For an element these can be a type and class name, while for a file these can be a name and an extension, respectively.

View the full Wikipedia page for Attribute (computing)
↑ Return to Menu

Identifier (computer languages) in the context of Label (computer science)

In programming languages, a label is a sequence of characters that identifies a location within source code. In most languages, labels take the form of an identifier, often followed by a punctuation character (e.g., a colon). In many high-level languages, the purpose of a label is to act as the destination of a GOTO statement. In assembly language, labels can be used anywhere an address can (for example, as the operand of a JMP or MOV instruction). Also in Pascal and its derived variations. Some languages, such as Fortran and BASIC, support numeric labels. Labels are also used to identify an entry point into a compiled sequence of statements (e.g., during debugging).

View the full Wikipedia page for Label (computer science)
↑ Return to Menu

Identifier (computer languages) in the context of Functional programming language

In computer science, functional programming is a programming paradigm where programs are constructed by applying and composing functions. It is a declarative programming paradigm in which function definitions are trees of expressions that map values to other values, rather than a sequence of imperative statements which update the running state of the program.

In functional programming, functions are treated as first-class entities, meaning that they can be bound to names (including local identifiers), passed as arguments, and returned from other functions, just as any other data type can. This allows programs to be written in a declarative and composable style, where small functions are combined in a modular manner.

View the full Wikipedia page for Functional programming language
↑ Return to Menu