Run time (program lifecycle phase) in the context of Constant (computer science)


Run time (program lifecycle phase) in the context of Constant (computer science)

Run time (program lifecycle phase) Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Run time (program lifecycle phase) in the context of "Constant (computer science)"


⭐ Core Definition: Run time (program lifecycle phase)

In computing, execution is the process by which a computer program is processed to perform the actions that it encodes. As the processor follows the program instructions, effects are produced in accordance with the semantics of those instructions. The term run is generally synonymous. The act of starting execution is often called launching or invoking in addition to executing and running.

An execution processor comes in many forms. A machine code program may be executed via the programmable interface of a computer where execution involves repeatedly following a fetch–decode–execute cycle for each program instruction executed by the control unit. Source code may be executed by interpreter software. A program may be executed in a batch process without human interaction or a user may type commands in an interactive session.

↓ Menu
HINT:

👉 Run time (program lifecycle phase) in the context of Constant (computer science)

In computer programming, a constant is a value that is not altered by the program during normal execution. When associated with an identifier, a constant is said to be "named," although the terms "constant" and "named constant" are often used interchangeably. This is contrasted with a variable, which is an identifier with a value that can be changed during normal execution. To simplify, constants' values remains, while the values of variables varies, hence both their names.

Constants are useful for both programmers and compilers: for programmers, they are a form of self-documenting code and allow reasoning about correctness, while for compilers, they allow compile-time and run-time checks that verify that constancy assumptions are not violated, and allow or simplify some compiler optimizations.

↓ Explore More Topics
In this Dossier

Run time (program lifecycle phase) in the context of Variable (computer science)

In high-level programming, a variable is an abstract storage or indirection location paired with an associated symbolic name, which contains some known or unknown quantity of data or object referred to as a value; or in simpler terms, a variable is a named container for a particular set of bits or type of data (like integer, float, string, etc...) or undefined. A variable can eventually be associated with or identified by a memory address. The variable name is the usual way to reference the stored value, in addition to referring to the variable itself, depending on the context. This separation of name and content allows the name to be used independently of the exact information it represents. The identifier in computer source code can be bound to a value during run time, and the value of the variable may thus change during the course of program execution.

Variables in programming may not directly correspond to the concept of variables in mathematics. The latter is abstract, having no reference to a physical object such as storage location. The value of a computing variable is not necessarily part of an equation or formula as in mathematics. Furthermore, the variables can also be constants if the value is defined statically. Variables in computer programming are frequently given long names to make them relatively descriptive of their use, whereas variables in mathematics often have terse, one- or two-character names for brevity in transcription and manipulation.

View the full Wikipedia page for Variable (computer science)
↑ Return to Menu

Run time (program lifecycle phase) in the context of Just-in-time compilation

In computing, just-in-time (JIT) compilation (also dynamic translation or run-time compilations) is compilation (of computer code) during execution of a program (at run time) rather than before execution. This may consist of source code translation but is more commonly bytecode translation to machine code, which is then executed directly. A system implementing a JIT compiler typically continuously analyses the code being executed and identifies parts of the code where the speedup gained from compilation or recompilation would outweigh the overhead of compiling that code.

JIT compilation is a combination of the two traditional approaches to translation to machine code: ahead-of-time compilation (AOT), and interpretation, which combines some advantages and drawbacks of both. Roughly, JIT compilation combines the speed of compiled code with the flexibility of interpretation, with the overhead of an interpreter and the additional overhead of compiling and linking (not just interpreting). JIT compilation is a form of dynamic compilation, and allows adaptive optimization such as dynamic recompilation and microarchitecture-specific speedups. Interpretation and JIT compilation are particularly suited for dynamic programming languages, as the runtime system can handle late-bound data types and enforce security guarantees.

View the full Wikipedia page for Just-in-time compilation
↑ Return to Menu

Run time (program lifecycle phase) in the context of Compile time

In computer science, compile time (or compile-time) describes the time window during which a language's statements are converted into binary instructions for the processor to execute. The term is used as an adjective to describe concepts related to the context of program compilation, as opposed to concepts related to the context of program execution (run time).

For example, compile-time requirements are programming language requirements that must be met by source code before compilation and compile-time properties are properties of the program that can be reasoned about during compilation. The actual length of time it takes to compile a program is usually referred to as compilation time.

View the full Wikipedia page for Compile time
↑ Return to Menu

Run time (program lifecycle phase) in the context of Dynamic dispatch

In computer science, dynamic dispatch is the process of selecting which implementation of a polymorphic operation (method or function) to call at run time. It is commonly employed in, and considered a prime characteristic of, object-oriented programming (OOP) languages and systems.

Object-oriented systems model a problem as a set of interacting objects that enact operations referred to by name. Polymorphism is the phenomenon wherein somewhat interchangeable objects each expose an operation of the same name but possibly differing in behavior. As an example, a File object and a Database object both have a StoreRecord method that can be used to write a personnel record to storage. Their implementations differ. A program holds a reference to an object which may be either a File object or a Database object. Which one it is may have been determined by a run-time setting, and at this stage, the program may not know or care which. When the program calls StoreRecord on the object, something needs to choose which behavior gets enacted. If one thinks of OOP as sending messages to objects, then in this example the program sends a StoreRecord message to an object of unknown type, leaving it to the run-time support system to dispatch the message to the right object. The object enacts whichever behavior it implements.

View the full Wikipedia page for Dynamic dispatch
↑ Return to Menu

Run time (program lifecycle phase) in the context of Syntax error

A syntax error is a mismatch in the syntax of data input to a computer system that requires a specific syntax. For source code in a programming language, a compiler detects syntax errors before the software is run (at compile-time), whereas an interpreter detects syntax errors at run-time. A syntax error can occur based on syntax rules other than those defined by a programming language. For example, typing an invalid equation into a calculator (an interpreter) is a syntax error.

Some errors that occur during the translation of source code may be considered syntax errors by some but not by others. For example, some say that an uninitialized variable in Java is a syntax error, but others disagree – classifying it as a static semantic error.

View the full Wikipedia page for Syntax error
↑ Return to Menu

Run time (program lifecycle phase) in the context of Ahead-of-time compilation

In computer science, ahead-of-time compilation (AOT compilation) is the act of compiling an (often) higher-level programming language into an (often) lower-level language before execution of a program, usually at build-time, to reduce the amount of work needed to be performed at run time.

It is most commonly associated with the act of compiling a higher-level programming language such as C or C++, or an intermediate representation such as Java bytecode or Common Intermediate Language (CIL) code, into native machine code so that the resulting binary file can execute natively, just like a standard native compiler. When being used in this context, it is often seen as an opposite of just-in-time (JIT) compiling.

View the full Wikipedia page for Ahead-of-time compilation
↑ Return to Menu

Run time (program lifecycle phase) in the context of Dynamic compilation

Dynamic compilation is a process used by some programming language implementations to gain performance during program execution. Although the technique originated in Smalltalk, the best-known language that uses this technique is Java. Since the machine code emitted by a dynamic compiler is constructed and optimized at program runtime, the use of dynamic compilation enables optimizations for efficiency not available to statically-compiled programs (i.e. those compiled by a so-called "batch compiler", as written below) except through code duplication or metaprogramming.

Runtime environments using dynamic compilation typically have programs run slowly for the first few minutes, and then after that, most of the compilation and recompilation is done and it runs quickly. Due to this initial performance lag, dynamic compilation is undesirable in certain cases. In most implementations of dynamic compilation, some optimizations that could be done at the initial compile time are delayed until further compilation at run-time, causing further unnecessary slowdowns. Just-in-time compilation is a form of dynamic compilation.

View the full Wikipedia page for Dynamic compilation
↑ Return to Menu

Run time (program lifecycle phase) in the context of Late binding

Late binding is the act or mechanism of binding two software entities at runtime as opposed to early binding which occurs before the program starts – such as design or build times.The implementation of late binding differs by context. The term dynamic binding is sometimes used for the same concept, but is more commonly refers to dynamic scope.

View the full Wikipedia page for Late binding
↑ Return to Menu