Elementary arithmetic in the context of Dienes blocks


Elementary arithmetic in the context of Dienes blocks

Elementary arithmetic Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Elementary arithmetic in the context of "Dienes blocks"


⭐ Core Definition: Elementary arithmetic

Elementary arithmetic is a branch of mathematics involving addition, subtraction, multiplication, and division. Due to its low level of abstraction, broad range of application, and position as the foundation of all mathematics, elementary arithmetic is generally the first branch of mathematics taught in schools.

↓ Menu
HINT:

👉 Elementary arithmetic in the context of Dienes blocks

Base ten blocks, also known as Dienes blocks after popularizer Zoltán Dienes (Hungarian: [ˈdijɛnɛʃ]), are a mathematical manipulative used by students to practice counting and elementary arithmetic and develop number sense in the context of the decimal place-value system as a more concrete and direct representation than written Hindu–Arabic numerals. The three-dimensional blocks are made of a solid material such as plastic or wood and generally come in four sizes, each representing a power of ten used as a place in the decimal system: units (ones place), longs (tens place), flats (hundreds place) and blocks (thousands place). There are also computer programs available that simulate base ten blocks.

Base ten blocks were first described by Catherine Stern in 1949, though Maria Montessori had earlier introduced a similar manipulative, the "golden beads", which were assembled into the same shapes as base ten blocks. Dienes popularized the idea starting in the 1950s, recommending blocks for several number bases (two, three, etc.), called multibase arithmetic blocks (MAB), so students could concretely compare different number bases and learn about the decimal place-value system as one arbitrary choice among many possibilities. Multibase blocks found support in the New Math movement of the 1960s. Today, base ten blocks are widespread while blocks for other bases are rarely found.

↓ Explore More Topics
In this Dossier

Elementary arithmetic in the context of Geometry

Geometry is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a geometer. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts.

Originally developed to model the physical world, geometry has applications in almost all sciences, and also in art, architecture, and other activities that are related to graphics. Geometry also has applications in areas of mathematics that are apparently unrelated. For example, methods of algebraic geometry are fundamental in Wiles's proof of Fermat's Last Theorem, a problem that was stated in terms of elementary arithmetic, and remained unsolved for several centuries.

View the full Wikipedia page for Geometry
↑ Return to Menu

Elementary arithmetic in the context of Operation (mathematics)

In mathematics, an operation is a function from a set to itself. For example, an operation on real numbers will take in real numbers and return a real number. An operation can take zero or more input values (also called "operands" or "arguments") to a well-defined output value. The number of operands is the arity of the operation.

The most commonly studied operations are binary operations (i.e., operations of arity 2), such as addition and multiplication, and unary operations (i.e., operations of arity 1), such as additive inverse and multiplicative inverse. An operation of arity zero, or nullary operation, is a constant. The mixed product is an example of an operation of arity 3, also called ternary operation.

View the full Wikipedia page for Operation (mathematics)
↑ Return to Menu

Elementary arithmetic in the context of Number line

A number line is a graphical representation of a straight line that serves as spatial representation of numbers, usually graduated like a ruler with a particular origin point representing the number zero and evenly spaced marks in either direction representing integers, imagined to extend infinitely. The association between numbers and points on the line links arithmetical operations on numbers to geometric relations between points, and provides a conceptual framework for learning mathematics.

In elementary mathematics, the number line is initially used to teach addition and subtraction of integers, especially involving negative numbers. As students progress, more kinds of numbers can be placed on the line, including fractions, decimal fractions, square roots, and transcendental numbers such as the circle constant π: Every point of the number line corresponds to a unique real number, and every real number to a unique point.

View the full Wikipedia page for Number line
↑ Return to Menu

Elementary arithmetic in the context of Distribution (logic)

In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equalityis always true in elementary algebra.For example, in elementary arithmetic, one hasTherefore, one would say that multiplication distributes over addition.

This basic property of numbers is part of the definition of most algebraic structures that have two operations called addition and multiplication, such as complex numbers, polynomials, matrices, rings, and fields. It is also encountered in Boolean algebra and mathematical logic, where each of the logical and (denoted ) and the logical or (denoted ) distributes over the other.

View the full Wikipedia page for Distribution (logic)
↑ Return to Menu

Elementary arithmetic in the context of Division by zero

In mathematics, division by zero, division where the divisor (denominator) is zero, is a problematic special case. Using fraction notation, the general example can be written as , where is the dividend (numerator).

The usual definition of the quotient in elementary arithmetic is the number which yields the dividend when multiplied by the divisor. That is, is equivalent to . By this definition, the quotient is nonsensical, as the product is always rather than some other number . Following the ordinary rules of elementary algebra while allowing division by zero can create a mathematical fallacy, a subtle mistake leading to absurd results. To prevent this, the arithmetic of real numbers and more general numerical structures called fields leaves division by zero undefined, and situations where division by zero might occur must be treated with care. Since any number multiplied by zero is zero, the expression is also undefined.

View the full Wikipedia page for Division by zero
↑ Return to Menu