Electrification in the context of Electric induction


Electrification in the context of Electric induction

Electrification Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Electrification in the context of "Electric induction"


⭐ Core Definition: Electrification

Electrification is the process of powering by electricity and, in many contexts, the introduction of such power by changing over from an earlier power source. In the context of history of technology and economic development, electrification refers to the build-out of the electricity generation and electric power distribution systems. In the context of sustainable energy, electrification refers to the build-out of super grids and smart grids with distributed energy resources (such as energy storage) to accommodate the energy transition to renewable energy and the switch of end-uses to electricity.

The electrification of particular sectors of the economy, particularly out of context, is called by modified terms such as factory electrification, household electrification, rural electrification and railway electrification. In the context of sustainable energy, terms such as transport electrification (referring to electric vehicles) or heating electrification (referring to heat pumps powered with solar photovoltaics) are used. It may also apply to changing industrial processes such as smelting, melting, separating or refining from coal or coke heating, or from chemical processes to some type of electric process such as electric arc furnace, electric induction or resistance heating, or electrolysis or electrolytic separating.

↓ Menu
HINT:

In this Dossier

Electrification in the context of Climate change mitigation

Climate change mitigation (or decarbonisation) is action to limit the greenhouse gases in the atmosphere that cause climate change. Climate change mitigation actions include conserving energy and replacing fossil fuels with clean energy sources. Secondary mitigation strategies include changes to land use and removing carbon dioxide (CO2) from the atmosphere. Recent assessments emphasize that global greenhouse gas emissions must peak before 2025 and decline by about 43% by 2030 to limit warming to 1.5 °C, requiring rapid transitions in energy, transport, and land-use systems. Current climate change mitigation policies are insufficient as they would still result in global warming of about 2.7 °C by 2100, significantly above the 2015 Paris Agreement's goal of limiting global warming to below 2 °C.

Solar energy and wind power can replace fossil fuels at the lowest cost compared to other renewable energy options. The availability of sunshine and wind is variable and can require electrical grid upgrades, such as using long-distance electricity transmission to group a range of power sources. Energy storage can also be used to even out power output, and demand management can limit power use when power generation is low. Cleanly generated electricity can usually replace fossil fuels for powering transportation, heating buildings, and running industrial processes. Certain processes are more difficult to decarbonise, such as air travel and cement production. Carbon capture and storage (CCS) can be an option to reduce net emissions in these circumstances, although fossil fuel power plants with CCS technology is currently a high-cost climate change mitigation strategy.

View the full Wikipedia page for Climate change mitigation
↑ Return to Menu

Electrification in the context of Second Industrial Revolution

The Second Industrial Revolution, also known as the Technological Revolution, was a phase of rapid scientific discovery, standardisation, mass production and industrialisation from the late 19th century into the early 20th century. The First Industrial Revolution, which ended in the middle of the 19th century, was punctuated by a slowdown in important inventions before the Second Industrial Revolution in 1870. Though a number of its events can be traced to earlier innovations in manufacturing, such as the establishment of a machine tool industry, the development of methods for manufacturing interchangeable parts, as well as the invention of the Bessemer process and open hearth furnace to produce steel, later developments heralded the Second Industrial Revolution, which is generally dated between 1870 and 1914 when World War I commenced.

Advancements in manufacturing and production technology enabled the widespread adoption of technological systems such as telegraph and railroad networks, gas and water supply, and sewage systems, which had earlier been limited to a few select cities. The enormous expansion of rail and telegraph lines after 1870 allowed unprecedented movement of people and ideas, which culminated in a new wave of colonialism and globalization. In the same time period, new technological systems were introduced, most significantly electrical power and telephones. The Second Industrial Revolution continued into the 20th century with early factory electrification and the production line; it ended at the beginning of World War I.

View the full Wikipedia page for Second Industrial Revolution
↑ Return to Menu

Electrification in the context of Mechanisation

Mechanization (or mechanisation) is the process of changing from working largely or exclusively by hand or with animals to doing that work with machinery. In an early engineering text, a machine is defined as follows:

In every fields, mechanization includes the use of hand tools. In modern usage, such as in engineering or economics, mechanization implies machinery more complex than hand tools and would not include simple devices such as an ungeared horse or donkey mill. Devices that cause speed changes or changes to or from reciprocating to rotary motion, using means such as gears, pulleys or sheaves and belts, shafts, cams and cranks, usually are considered machines. After electrification, when most small machinery was no longer hand powered, mechanization was synonymous with motorized machines. Extension of mechanization of the production process is termed as automation and it is controlled by a closed loop system in which feedback is provided by the sensors. In an automated machine the work of different mechanisms is performed automatically.

View the full Wikipedia page for Mechanisation
↑ Return to Menu

Electrification in the context of Big business

Big business involves large-scale corporate-controlled financial or business activities. As a term, it describes activities that run from "huge transactions" to the more general "doing big things". In corporate jargon, the concept is commonly known as enterprise, or activities involving enterprise customers.

The concept first rose in a symbolic sense after 1880 in connection with the combination movement that began in American business at that time. Some examples of American corporations that fall into the category of "big business" as of 2015 are ExxonMobil, Walmart, Google, Microsoft, Apple, General Electric, General Motors, JPMorgan Chase, Bank of America, Wells Fargo, Citigroup, and Goldman Sachs; in the United States, big businesses in general are sometimes collectively pejoratively called "corporate America". The largest German corporations as of 2012 included Daimler AG, Deutsche Telekom, Siemens, and Deutsche Bank. SAP is Germany's largest software company. Among the largest companies in the United Kingdom as of 2012 are HSBC, Barclays, WPP plc, and BP. The latter half of the 19th century saw more technological advances and corporate growth in additional sectors, such as petroleum, machinery, chemicals, and electrical equipment (see Second Industrial Revolution).

View the full Wikipedia page for Big business
↑ Return to Menu

Electrification in the context of Oil lamp

An oil lamp is a lamp used to produce light continuously for a period of time using an oil-based fuel source. The use of oil lamps began thousands of years ago and continues to this day, although their use is less common in modern times. They work in the same way as a candle but with fuel that is liquid at room temperature, so that a container for the oil is required. A textile wick drops down into the oil, and is lit at the end, burning the oil as it is drawn up the wick.

Oil lamps are a form of lighting, and were used as an alternative to candles before the use of electric lights. Starting in 1780, the Argand lamp quickly replaced other oil lamps still in their basic ancient form. These in turn were replaced by the kerosene lamp in about 1850. In small towns and rural areas the latter continued in use well into the 20th century, until such areas were finally electrified and light bulbs could be used.

View the full Wikipedia page for Oil lamp
↑ Return to Menu

Electrification in the context of Renewable energy

Renewable energy (also called green energy) is energy made from renewable natural resources that are replenished on a human timescale. The most widely used renewable energy types are solar energy, wind power, and hydropower. Bioenergy and geothermal power are also significant in some countries. Some also consider nuclear power a renewable power source, although this is controversial, as nuclear energy requires mining uranium, a nonrenewable resource. Renewable energy installations can be large or small and are suited for both urban and rural areas. Renewable energy is often deployed together with further electrification. This has several benefits: electricity can move heat and vehicles efficiently and is clean at the point of consumption. Variable renewable energy sources are those that have a fluctuating nature, such as wind power and solar power. In contrast, controllable renewable energy sources include dammed hydroelectricity, bioenergy, or geothermal power.

Renewable energy systems have rapidly become more efficient and cheaper over the past 30 years. A large majority of worldwide newly installed worldwide electricity capacity is now renewable. Renewable energy sources, such as solar and wind power, have seen significant cost reductions over the past decade, making them more competitive with traditional fossil fuels. In some geographic localities, photovoltaic solar or onshore wind is the cheapest new-build electricity. From 2011 to 2021, renewable energy grew from 20% to 28% of the global electricity supply. Power from the sun and wind accounted for most of this increase, growing from a combined 2% to 10%. Use of fossil energy shrank from 68% to 62%. In 2024, renewables accounted for over 30% of global electricity generation and are projected to reach over 45% by 2030. Many countries already have renewables contributing more than 20% of their total energy supply, with some generating over half or even all their electricity from renewable sources.

View the full Wikipedia page for Renewable energy
↑ Return to Menu

Electrification in the context of Electric vehicle

An electric vehicle (EV) is any motorized vehicle whose propulsion is provided fully or mostly by electric power, via grid electricity or from onboard rechargeable batteries. EVs encompass a wide range of transportation modes, including road (electric cars, buses, trucks and personal transporters) and rail vehicles (electric trains, trams and monorails), electric boats and submersibles, electric aircraft (both fixed-wing and multirotors) and electric spacecraft.

Early electric vehicles first came into existence in the late 19th century, when the Second Industrial Revolution brought forth electrification and mass utilization of DC and AC electric motors. Using electricity was among the preferred methods for early motor vehicle propulsion as it provided a level of quietness, comfort and ease of operation that could not be achieved by the gasoline engine cars of the time, but range anxiety due to the limited energy storage offered by contemporary battery technologies hindered any mass adoption of electric vehicles as private transportation throughout the 20th century. Internal combustion engines (both gasoline and diesel engines) were the dominant propulsion mechanisms for cars and trucks for about 100 years, but electricity-powered locomotion remained commonplace in other vehicle types, such as overhead line-powered mass transit vehicles like electric multiple units, streetcars, monorails and trolley buses, as well as various small, low-speed, short-range battery-powered personal vehicles such as mobility scooters.

View the full Wikipedia page for Electric vehicle
↑ Return to Menu

Electrification in the context of Rural electrification

Rural electrification is the process of bringing electrical power to rural and remote areas. Rural communities are suffering from colossal market failures as the national grids fall short of their demand for electricity. As of 2019, 770 million people live without access to electricity – 10.2% of the global population. Electrification typically begins in cities and towns and gradually extends to rural areas, however, this process often runs into obstacles in developing nations. Expanding the national grid is expensive and countries consistently lack the capital to grow their current infrastructure. Additionally, amortizing capital costs to reduce the unit cost of each hook-up is harder to do in lightly populated areas (yielding higher per capita share of the expense). If countries are able to overcome these obstacles and reach nationwide electrification, rural communities will be able to reap considerable amounts of economic and social development.

View the full Wikipedia page for Rural electrification
↑ Return to Menu

Electrification in the context of Utilization voltage

Mains electricity, utility power, grid power, domestic power, wall power, household current, or, in some parts of Canada, hydro, is a general-purpose alternating-current (AC) electric power supply. It is the form of electrical power that is delivered to homes and businesses through the electrical grid in many parts of the world. People use this electricity to power everyday items (such as domestic appliances, televisions and lamps) by plugging them into a wall outlet.

The voltage and frequency of electric power differs between regions. In much of the world, a voltage (nominally) of 230 volts and frequency of 50 Hz is used. In North America, the most common combination is 120 V and a frequency of 60 Hz. Other combinations exist, for example, 230 V at 60 Hz. Travellers' portable appliances may be inoperative or damaged by foreign electrical supplies. Non-interchangeable plugs and sockets in different regions provide some protection from accidental use of appliances with incompatible voltage and frequency requirements.

View the full Wikipedia page for Utilization voltage
↑ Return to Menu

Electrification in the context of Portable engine

A portable engine is an engine, either a steam engine or an internal combustion engine, that sits in one place while operating (providing power to machinery), but (unlike a stationary engine) is portable and thus can be easily moved from one work site to another. Mounted on wheels or skids, it is either towed to the work site or moves there via self-propulsion.

Portable engines were in common use in industrialised countries from the early 19th through early 20th centuries, during an era when mechanical power transmission was widespread. Before that, most power generation and transmission were by animal, water, wind, or human; after that, a combination of electrification (including rural electrification) and modern vehicles and equipment (such as tractors, trucks, cars, engine-generators, and machines with their engines built in) displaced most use of portable engines. In developing countries today, portable engines still have some use (typically in the form of modern small engines mounted on boards), although the technologies mentioned above increasingly limit their demand there as well. In industrialised countries they are no longer used for commercial purposes, but preserved examples can often be seen at steam fairs driving appropriate equipment for demonstration purposes.

View the full Wikipedia page for Portable engine
↑ Return to Menu

Electrification in the context of Kerosene lamp

A kerosene lamp (also known as a paraffin lamp in some countries) is a type of lighting device that uses kerosene as a fuel. Kerosene lamps utilize a wick or mantle as a light source, protected by a glass chimney or globe; lamps may be used on a table, or as hand-held lanterns for portable lighting. Like oil lamps, they are useful for lighting without electricity, such as in regions without rural electrification, in electrified areas during power outages, at campsites, and on boats. There are three common types of kerosene lamp: flat-wick, central-draft (tubular round wick), and mantle lamp. Kerosene lanterns meant for portable use have a flat wick and are made in dead-flame, hot-blast, and cold-blast variants.

Pressurized kerosene lamps use a gas mantle; these are known as Petromax, Tilley lamps, or Coleman lamps, among other manufacturers. They produce more light per unit of fuel than wick-type lamps, but are more complex and expensive in construction and more complex to operate. A hand-pump pressurizes air, which forces liquid fuel from a reservoir into a gas chamber. Vapor from the chamber burns, heating a mantle to incandescence and providing heat.

View the full Wikipedia page for Kerosene lamp
↑ Return to Menu

Electrification in the context of Decarbonization

Climate change mitigation (or decarbonisation) is action to limit the greenhouse gases in the atmosphere that cause climate change. Climate change mitigation actions include conserving energy and replacing fossil fuels with clean energy sources. Secondary mitigation strategies include changes to land use and removing carbon dioxide (CO2) from the atmosphere. Recent assessments emphasize that global greenhouse gas emissions must peak before 2025 and decline by about 43% by 2030 to limit warming to 1.5 °C, requiring rapid transitions in energy, transport, and land-use systems. Current climate change mitigation policies are insufficient as they would still result in global warming of about 2.7 °C by 2100, significantly above the 2015 Paris Agreement's goal of limiting global warming to below 2 °C.Recent research shows that demand-side climate solutions—such as shifts in transportation behavior, dietary change, improved building energy efficiency, and reduced material consumption—could reduce global greenhouse gas emissions by 40% to 70% by 2050 while improving human well-being.A 2023 study published in Nature Energy found that rapidly expanding global solar and wind capacity could reduce energy-sector carbon dioxide emissions by up to 6.6 gigatonnes per year by 2035, making renewable energy one of the most cost-effective pathways for climate change mitigation.

Solar energy and wind power can replace fossil fuels at the lowest cost compared to other renewable energy options. The availability of sunshine and wind is variable and can require electrical grid upgrades, such as using long-distance electricity transmission to group a range of power sources. Energy storage can also be used to even out power output, and demand management can limit power use when power generation is low. Cleanly generated electricity can usually replace fossil fuels for powering transportation, heating buildings, and running industrial processes. Certain processes are more difficult to decarbonise, such as air travel and cement production. Carbon capture and storage (CCS) can be an option to reduce net emissions in these circumstances, although fossil fuel power plants with CCS technology is currently a high-cost climate change mitigation strategy.

View the full Wikipedia page for Decarbonization
↑ Return to Menu

Electrification in the context of Stationary engine

A stationary engine is an engine whose framework does not move. They are used to drive immobile equipment, such as pumps, generators, mills or factory machinery, or cable cars. The term usually refers to large immobile reciprocating engines, principally stationary steam engines and, to some extent, stationary internal combustion engines. Other large immobile power sources, such as steam turbines, gas turbines, and large electric motors, are categorized separately.

Stationary engines, especially stationary steam engines were once widespread in the late Industrial Revolution. This was an era when each factory or mill generated its own power, and power transmission was mechanical (via line shafts, belts, gear trains, and clutches). Applications for stationary engines have declined since electrification has become widespread; most industrial uses today draw electricity from an electrical grid and distribute it to various individual electric motors instead.

View the full Wikipedia page for Stationary engine
↑ Return to Menu

Electrification in the context of Green hydrogen

Green hydrogen (GH2 or GH2) is hydrogen produced by the electrolysis of water using renewable electricity. Production of green hydrogen causes significantly lower greenhouse gas emissions than production of grey hydrogen, which is derived from fossil fuels without carbon capture.

Green hydrogen's principal purpose is to help limit global warming, reduce fossil fuel dependence by replacing grey hydrogen, and provide for an expanded set of end-uses in specific economic sectors, sub-sectors and activities. These end-uses may be technically difficult to decarbonize through other means such as electrification with renewable power. Its main applications are likely to be in heavy industry (e.g. high temperature processes alongside electricity, feedstock for production of green ammonia and organic chemicals, as direct reduction steelmaking), shipping, and long-term energy storage.

View the full Wikipedia page for Green hydrogen
↑ Return to Menu