Energy conservation in the context of "Climate change mitigation"

⭐ In the context of climate change mitigation, energy conservation is considered…

Ad spacer

⭐ Core Definition: Energy conservation

Energy conservation is the effort to reduce wasteful energy consumption by using fewer energy services. This can be done by using energy more effectively (using less and better sources of energy for continuous service) or changing one's behavior to use less and better source of service (for example, by driving vehicles which consume renewable energy or energy with more efficiency). Energy conservation can be achieved through efficient energy use, which has some advantages, including a reduction in greenhouse gas emissions and a smaller carbon footprint, as well as cost, water, and energy savings.

Green engineering practices improve the life cycle of the components of machines which convert energy from one form into another.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Energy conservation in the context of Climate change mitigation

Climate change mitigation (or decarbonisation) is action to limit the greenhouse gases in the atmosphere that cause climate change. Climate change mitigation actions include conserving energy and replacing fossil fuels with clean energy sources. Secondary mitigation strategies include changes to land use and removing carbon dioxide (CO2) from the atmosphere. Recent assessments emphasize that global greenhouse gas emissions must peak before 2025 and decline by about 43% by 2030 to limit warming to 1.5 °C, requiring rapid transitions in energy, transport, and land-use systems. Current climate change mitigation policies are insufficient as they would still result in global warming of about 2.7 °C by 2100, significantly above the 2015 Paris Agreement's goal of limiting global warming to below 2 °C.

Solar energy and wind power can replace fossil fuels at the lowest cost compared to other renewable energy options. The availability of sunshine and wind is variable and can require electrical grid upgrades, such as using long-distance electricity transmission to group a range of power sources. Energy storage can also be used to even out power output, and demand management can limit power use when power generation is low. Cleanly generated electricity can usually replace fossil fuels for powering transportation, heating buildings, and running industrial processes. Certain processes are more difficult to decarbonise, such as air travel and cement production. Carbon capture and storage (CCS) can be an option to reduce net emissions in these circumstances, although fossil fuel power plants with CCS technology is currently a high-cost climate change mitigation strategy.

↓ Explore More Topics
In this Dossier

Energy conservation in the context of Energy technology

Energy development is the field of activities focused on obtaining sources of energy from natural resources. These activities include the production of renewable, nuclear, and fossil fuel derived sources of energy, and for the recovery and reuse of energy that would otherwise be wasted. Energy conservation and efficiency measures reduce the demand for energy development, and can have benefits to society with improvements to environmental issues.

Societies use energy for transportation, manufacturing, illumination, heating and air conditioning, and communication, for industrial, commercial, agricultural and domestic purposes. Energy resources may be classified as primary resources, where the resource can be used in substantially its original form, or as secondary resources, where the energy source must be converted into a more conveniently usable form. Non-renewable resources are significantly depleted by human use, whereas renewable resources are produced by ongoing processes that can sustain indefinite human exploitation.

↑ Return to Menu

Energy conservation in the context of Energy-plus-house

An energy-plus building (also called: plus energy building, plus-energy house, efficiency-plus house) produces more energy from renewable energy sources, over the course of a year, than it imports from external sources. This is achieved using a combination of microgeneration technology and low-energy building techniques, such as: passive solar building design, insulation and careful site selection and placement. A reduction of modern conveniences can also contribute to energy savings, however many energy-plus houses are almost indistinguishable from a traditional home, preferring instead to use highly energy-efficient appliances, fixtures, etc., throughout the house.

"Plusenergihuset" (the plus energy house) was the Danish term used by Jean Fischer in his publication from 1982 about his own energy-plus house.PlusEnergy is a brand name, used by Rolf Disch, to describe a structure that produces more energy than it uses. The term was coined by Disch in 1994 when building his private residence, the Heliotrope as the first PlusEnergy house in the world. Disch then went on to refine the concepts involved with several more projects built by his company, Rolf Disch Solar Architecture, in order to promote PlusEnergy for wider adoption in residential, commercial and retail spaces. Disch maintains that PlusEnergy is more than just a method of producing environmentally-friendly housing, but also an integrated ecological and architectural concept. As such, PlusEnergy is intended to be superior to low-energy or zero-energy designs such as those of Passivhaus.

↑ Return to Menu

Energy conservation in the context of Low carbon

A low-carbon economy (LCE) is an economy which absorbs as much greenhouse gas as it emits. Greenhouse gas (GHG) emissions due to human activity are the dominant cause of observed climate change since the mid-20th century. There are many proven approaches for moving to a low-carbon economy, such as encouraging renewable energy transition, energy conservation, and electrification of transportation (e.g. electric vehicles). An example are zero-carbon cities.

Shifting from high-carbon economies to low-carbon economies on a global scale could bring substantial benefits for all countries. It would also contribute to climate change mitigation.

↑ Return to Menu

Energy conservation in the context of Energy management

Energy management includes planning and operation of energy production and energy consumption units as well as energy distribution and storage. Energy management is performed via energy management systems (EMS), which are designed with hardware and software components to implement the tasks. Energy management can be classified into building energy management, grid-scale energy management (including grid energy storage), and marine energy management.

Energy management objectives are resource conservation, climate protection and cost savings, while the users have permanent access to the energy they need. It is connected closely to environmental management, production management, logistics and other established business functions. The VDI-Guideline 4602 released a definition which includes the economic dimension: "Energy management is the proactive, organized and systematic coordination of procurement, conversion, distribution and use of energy to meet the requirements, taking into account environmental and economic objectives". It is a systematic endeavor to optimize energy efficiency for specific political, economic, and environmental objectives through engineering and management techniques.

↑ Return to Menu

Energy conservation in the context of Lighting control system

A lighting control system is intelligent network-based lighting control that incorporates communication between various system inputs and outputs related to lighting control with the use of one or more central computing devices. Lighting control systems are widely used on both indoor and outdoor lighting of commercial, industrial, and residential spaces. Lighting control systems are sometimes referred to under the term smart lighting. Lighting control systems serve to provide the right amount of light where and when it is needed.

Lighting control systems are employed to maximize the energy savings from the lighting system, satisfy building codes, or comply with green building and energy conservation programs. Lighting control systems may include a lighting technology designed for energy efficiency, convenience and security. This may include high efficiency fixtures and automated controls that make adjustments based on conditions such as occupancy or daylight availability. Lighting is the deliberate application of light to achieve some aesthetic or practical effect (e.g. illumination of a security breach). It includes task lighting, accent lighting, and general lighting.

↑ Return to Menu