Data communication in the context of Computer data


Data communication in the context of Computer data

Data communication Study page number 1 of 3

Play TriviaQuestions Online!

or

Skip to study material about Data communication in the context of "Computer data"


⭐ Core Definition: Data communication

Data communication is the transfer of data over a point-to-point or point-to-multipoint communication channel. Data communication comprises data transmission and data reception and can be classified as analog transmission and digital communications.

Analog data communication conveys voice, data, image, signal or video information using a continuous signal, which varies in amplitude, phase, or some other property. In baseband analog transmission, messages are represented by a sequence of pulses by means of a line code; in passband analog transmission, they are communicated by a limited set of continuously varying waveforms, using a digital modulation method. Passband modulation and demodulation is carried out by modem equipment.

↓ Menu
HINT:

In this Dossier

Data communication in the context of Telephone company

A telecommunications company is a kind of electronic communications service provider, more precisely a telecommunications service provider (TSP), that provides telecommunications services such as telephony and data communications access. Many traditional solely telephone companies now function as internet service providers (ISPs), and the distinction between a telephone company and ISP has tended to disappear completely over time, as the current trend for supplier convergence in the industry develops. Additionally, with advances in technology development, other traditional separate industries such as cable television, Voice-over IP (VoIP), and satellite providers offer similar competing features as the telephone companies to both residential and businesses leading to further evolution of corporate identity have taken shape.

Due to the nature of capital expenditure involved in the past, most telecommunications companies were government-owned agencies or privately owned monopolies operated in most countries under close state regulation. But today there are many private players in most regions of the world, and even most of the government-owned companies have been opened up to competition in-line with World Trade Organization (WTO) policy agenda. Historically, these government agencies were often referred to, primarily in Europe, as PTTs (postal, telegraph and telephone services). Telecommunications companies are common carriers, and in the United States are also known as local exchange carriers. With the advent of mobile telephony, telecommunications companies now include wireless carriers, or mobile network operators and even satellite providers (Iridium).

View the full Wikipedia page for Telephone company
↑ Return to Menu

Data communication in the context of Speed of light

The speed of light in vacuum, often called simply speed of light and commonly denoted c, is a universal physical constant exactly equal to 299,792,458 metres per second (approximately 1 billion kilometres per hour; 700 million miles per hour). It is exact because, by international agreement, a metre is defined as the length of the path travelled by light in vacuum during a time interval of 1299792458 second. The speed of light is the same for all observers, no matter their relative velocity. It is the upper limit for the speed at which information, matter, or energy can travel through space.

All forms of electromagnetic radiation, including visible light, travel in vacuum at the speed c. For many practical purposes, light and other electromagnetic waves will appear to propagate instantaneously, but for long distances and sensitive measurements, their finite speed has noticeable effects. Much starlight viewed on Earth is from the distant past, allowing humans to study the history of the universe by viewing distant objects. When communicating with distant space probes, it can take hours for signals to travel. In computing, the speed of light fixes the ultimate minimum communication delay. The speed of light can be used in time of flight measurements to measure large distances to extremely high precision.

View the full Wikipedia page for Speed of light
↑ Return to Menu

Data communication in the context of Entropy (information theory)

In information theory, the entropy of a random variable quantifies the average level of uncertainty or information associated with the variable's potential states or possible outcomes. This measures the expected amount of information needed to describe the state of the variable, considering the distribution of probabilities across all potential states. Given a discrete random variable , which may be any member within the set and is distributed according to , the entropy iswhere denotes the sum over the variable's possible values. The choice of base for , the logarithm, varies for different applications. Base 2 gives the unit of bits (or "shannons"), while base e gives "natural units" nat, and base 10 gives units of "dits", "bans", or "hartleys". An equivalent definition of entropy is the expected value of the self-information of a variable.

The concept of information entropy was introduced by Claude Shannon in his 1948 paper "A Mathematical Theory of Communication", and is also referred to as Shannon entropy. Shannon's theory defines a data communication system composed of three elements: a source of data, a communication channel, and a receiver. The "fundamental problem of communication" – as expressed by Shannon – is for the receiver to be able to identify what data was generated by the source, based on the signal it receives through the channel. Shannon considered various ways to encode, compress, and transmit messages from a data source, and proved in his source coding theorem that the entropy represents an absolute mathematical limit on how well data from the source can be losslessly compressed onto a perfectly noiseless channel. Shannon strengthened this result considerably for noisy channels in his noisy-channel coding theorem.

View the full Wikipedia page for Entropy (information theory)
↑ Return to Menu

Data communication in the context of Computer network

In computer science, computer engineering, and telecommunications, a network is a group of communicating computers and peripherals known as hosts, which communicate data to other hosts via communication protocols, as facilitated by networking hardware.

Within a computer network, hosts are identified by network addresses, which allow networking hardware to locate and identify hosts. Hosts may also have hostnames, memorable labels for the host nodes, which can be mapped to a network address using a hosts file or a name server such as Domain Name Service. The physical medium that supports information exchange includes wired media like copper cables, optical fibers, and wireless radio-frequency media. The arrangement of hosts and hardware within a network architecture is known as the network topology.

View the full Wikipedia page for Computer network
↑ Return to Menu

Data communication in the context of Telecommunications cable

Telecommunications cable is a type of guided transmission medium. Telecommunications are based on transmitting and receiving modulated waves/signals through a medium. Types of telecommunications cable include: electrical cables when electric current is carried; transmission lines and waveguides when electromagnetic waves are transmitted; optical fibers when light signals are transmitted.

When the distances involved are very short, the term signal cable may be used, for analog or digital communication. A data cable is used in digital data communications. Data cabling must conform to certain standards and best practices to ensure reliable performance and safety. When the distance between the transmitter and receiver is very far, an unguided or wireless medium transmission may be used, based on antennas.

View the full Wikipedia page for Telecommunications cable
↑ Return to Menu

Data communication in the context of Data (computer science)

In computer science, data (treated as singular, plural, or as a mass noun) is any sequence of one or more symbols; datum is a single unit of data. Data requires interpretation to become information. Digital data is data that is represented using the binary number system of ones (1) and zeros (0), instead of analog representation. In modern (post-1960) computer systems, all data is digital.

Data exists in three states: data at rest, data in transit and data in use. Data within a computer, in most cases, moves as parallel data. Data moving to or from a computer, in most cases, moves as serial data. Data sourced from an analog device, such as a temperature sensor, may be converted to digital using an analog-to-digital converter. Data representing quantities, characters, or symbols on which operations are performed by a computer are stored and recorded on magnetic, optical, electronic, or mechanical recording media, and transmitted in the form of digital electrical or optical signals. Data pass in and out of computers via peripheral devices.

View the full Wikipedia page for Data (computer science)
↑ Return to Menu

Data communication in the context of Paul Baran

Paul Baran (born Pesach Baran /ˈbærən/; April 29, 1926 – March 26, 2011) was a Polish-American engineer who was a pioneer in the development of computer networks. He was one of the two independent inventors of packet switching, which is today the dominant basis for data communications in computer networks worldwide, and went on to start several companies and develop other technologies that are an essential part of modern digital communication.

View the full Wikipedia page for Paul Baran
↑ Return to Menu

Data communication in the context of Donald Davies

Donald Watts Davies, CBE FRS (7 June 1924 – 28 May 2000) was a British computer scientist and Internet pioneer who was employed at the UK National Physical Laboratory (NPL).

During 1965-67 he invented modern data communications, including packet switching, high-speed routers, layered communication protocols, hierarchical computer networks and the essence of the end-to-end principle, concepts that are used today in computer networks worldwide. He envisioned, in 1966, that there would be a "single network" for data and telephone communications. Davies proposed and studied a commercial national data network in the United Kingdom and designed and built the first implementation of packet switching in the local-area NPL network in 1966-69 to demonstrate the technology. Many of the wide-area packet-switched networks built in the late 1960s and 1970s were similar "in nearly all respects" to his original 1965 design. Davies' work influenced the ARPANET in the United States and the CYCLADES project in France, and was key to the development of the data communications technology used in Internet, which is a network of networks.

View the full Wikipedia page for Donald Davies
↑ Return to Menu

Data communication in the context of Packet switching

In telecommunications, packet switching is a method of grouping data into short messages in fixed format, i.e., packets, that are transmitted over a telecommunications network. Packets consist of a header and a payload. Data in the header is used by networking hardware to direct the packet to its destination, where the payload is extracted and used by an operating system, application software, or higher layer protocols. Packet switching is the primary basis for data communications in computer networks worldwide.

During the early 1960s, American engineer Paul Baran developed a concept he called distributed adaptive message block switching as part of a research program at the RAND Corporation, funded by the United States Department of Defense. His proposal was to provide a fault-tolerant, efficient method for communication of voice messages using low-cost hardware to route the message blocks across a distributed network. His ideas contradicted then-established principles of pre-allocation of network bandwidth, exemplified by the development of telecommunications in the Bell System. The new concept found little resonance among network implementers until the independent work of Welsh computer scientist Donald Davies at the National Physical Laboratory beginning in 1965. Davies developed the concept for data communication using software switches in a high-speed computer network and coined the term packet switching. His work inspired numerous packet switching networks in the decade following, including the incorporation of the concept into the design of the ARPANET in the United States and the CYCLADES network in France. The ARPANET and CYCLADES were the primary precursor networks of the modern Internet.

View the full Wikipedia page for Packet switching
↑ Return to Menu

Data communication in the context of GSM

The Global System for Mobile Communications (GSM) is a family of standards to describe the protocols for second-generation (2G) digital cellular networks, as used by mobile devices such as mobile phones and mobile broadband modems. GSM is also a trade mark owned by the GSM Association. "GSM" may also refer to the voice codec initially used in GSM.

2G networks developed as a replacement for first generation (1G) analog cellular networks. The original GSM standard, which was developed by the European Telecommunications Standards Institute (ETSI), originally described a digital, circuit-switched network optimized for full duplex voice telephony, employing time division multiple access (TDMA) between stations. This expanded over time to include data communications, first by circuit-switched transport, then by packet data transport via its upgraded standards, GPRS and then EDGE. GSM exists in various versions based on the frequency bands used.

View the full Wikipedia page for GSM
↑ Return to Menu

Data communication in the context of Very high frequency

Very high frequency (VHF) is the ITU designation for the range of radio frequency electromagnetic waves (radio waves) from 30 to 300 megahertz (MHz), with corresponding wavelengths of ten meters to one meter. Frequencies immediately below VHF are denoted high frequency (HF), and the next higher frequencies are known as ultra high frequency (UHF).

VHF radio waves propagate mainly by line-of-sight, so they are blocked by hills and mountains, although due to refraction they can travel somewhat beyond the visual horizon out to about 160 km (100 miles). Common uses for radio waves in the VHF band are Digital Audio Broadcasting (DAB) and FM radio broadcasting, television broadcasting, two-way land mobile radio systems (emergency, business, private use and military), long range data communication up to several tens of kilometers with radio modems, amateur radio, and marine communications. Air traffic control communications and air navigation systems (e.g. VOR and ILS) work at distances of 100 kilometres (62 miles) or more to aircraft at cruising altitude.

View the full Wikipedia page for Very high frequency
↑ Return to Menu

Data communication in the context of Low-voltage differential signaling

Low-voltage differential signaling (LVDS), also known as TIA/EIA-644, is a technical standard that specifies electrical characteristics of a differential, serial signaling standard. LVDS operates at low power and can run at very high speeds using inexpensive twisted-pair copper cables. LVDS is a physical layer specification only; many data communication standards and applications use it and add a data link layer as defined in the OSI model on top of it.

LVDS was introduced in 1994, and has become popular in products such as LCD-TVs, in-car entertainment systems, industrial cameras and machine vision, notebook and tablet computers, and communications systems. The typical applications are high-speed video, graphics, video camera data transfers, and general purpose computer buses.

View the full Wikipedia page for Low-voltage differential signaling
↑ Return to Menu

Data communication in the context of Optical computing

Optical computing or photonic computing uses light waves produced by lasers or incoherent sources for data processing, data storage or data communication for computing. For decades, photons have shown promise to enable a higher bandwidth than the electrons used in conventional computers (see optical fibers).

Most research projects focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. This approach appears to offer the best short-term prospects for commercial optical computing, since optical components could be integrated into traditional computers to produce an optical-electronic hybrid. However, optoelectronic devices consume 30% of their energy converting electronic energy into photons and back; this conversion also slows the transmission of messages. All-optical computers eliminate the need for optical-electrical-optical (OEO) conversions, thus reducing electrical power consumption.

View the full Wikipedia page for Optical computing
↑ Return to Menu

Data communication in the context of Near-field communication

Near-field communication (NFC) is a set of communication protocols that enables communication between two electronic devices over a distance of 4 cm (1+12 in) or less. NFC offers a low-speed connection through a simple setup that can be used for the bootstrapping of capable wireless connections. Like other proximity card technologies, NFC is based on inductive coupling between two electromagnetic coils present on an NFC-enabled device such as a smartphone. NFC communicating in one or both directions uses a frequency of 13.56 MHz in the globally available unlicensed radio frequency ISM band, compliant with the ISO/IEC 18000-3 air interface standard at data rates ranging from 106 to 848 kbit/s.

The NFC Forum has helped define and promote the technology, setting standards for certifying device compliance. Secure communications are available by applying encryption algorithms as is done for credit cards and if they fit the criteria for being considered a personal area network.

View the full Wikipedia page for Near-field communication
↑ Return to Menu

Data communication in the context of Fiber-optic communication

Fiber-optic communication is a form of optical communication for transmitting information from one place to another by sending pulses of infrared or visible light through an optical fiber. The light is a form of carrier wave that is modulated to carry information. Fiber is preferred over electrical cabling when high bandwidth, long distance, or immunity to electromagnetic interference is required. This type of communication can transmit voice, video, and telemetry through local area networks or across long distances.

Optical fiber is used by many telecommunications companies to transmit telephone signals, internet communication, and cable television signals. Researchers at Bell Labs have reached a record bandwidth–distance product of over 100 petabit × kilometers per second using fiber-optic communication.

View the full Wikipedia page for Fiber-optic communication
↑ Return to Menu

Data communication in the context of Data Centre

A data center is a facility used to house computer systems and associated components, such as telecommunications and storage systems.

Since IT operations are crucial for business continuity, a data center generally includes redundant or backup components and infrastructure for power supply, data communication connections, environmental controls (e.g., cooling, fire suppression), and various security devices. Data centers are the foundation of the digital infrastructure that powers the modern economy, aggregating collective computing demands for cloud services, video streaming, blockchain and crypto mining, machine learning, and virtual reality. Large data centers operate at an industrial scale, requiring significant energy. Estimated global data center electricity consumption in 2024 was around 415 terawatt hours (TWh), or about 1.5% of global electricity demand. The IEA projects that data center electricity consumption could double by 2030. High demand, driven by artificial intelligence (AI) and machine learning workloads is accelerating the deployment of high-performance servers, leading to greater power density and increased strain on electric grids.

View the full Wikipedia page for Data Centre
↑ Return to Menu