Data communication in the context of "GSM"

Play Trivia Questions online!

or

Skip to study material about Data communication in the context of "GSM"

Ad spacer

⭐ Core Definition: Data communication

Data communication is the transfer of data over a point-to-point or point-to-multipoint communication channel. Data communication comprises data transmission and data reception and can be classified as analog transmission and digital communications.

Analog data communication conveys voice, data, image, signal or video information using a continuous signal, which varies in amplitude, phase, or some other property. In baseband analog transmission, messages are represented by a sequence of pulses by means of a line code; in passband analog transmission, they are communicated by a limited set of continuously varying waveforms, using a digital modulation method. Passband modulation and demodulation is carried out by modem equipment.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Data communication in the context of Telephone company

A telecommunications company is a kind of electronic communications service provider, more precisely a telecommunications service provider (TSP), that provides telecommunications services such as telephony and data communications access. Many traditional solely telephone companies now function as internet service providers (ISPs), and the distinction between a telephone company and ISP has tended to disappear completely over time, as the current trend for supplier convergence in the industry develops. Additionally, with advances in technology development, other traditional separate industries such as cable television, Voice-over IP (VoIP), and satellite providers offer similar competing features as the telephone companies to both residential and businesses leading to further evolution of corporate identity have taken shape.

Due to the nature of capital expenditure involved in the past, most telecommunications companies were government-owned agencies or privately owned monopolies operated in most countries under close state regulation. But today there are many private players in most regions of the world, and even most of the government-owned companies have been opened up to competition in-line with World Trade Organization (WTO) policy agenda. Historically, these government agencies were often referred to, primarily in Europe, as PTTs (postal, telegraph and telephone services). Telecommunications companies are common carriers, and in the United States are also known as local exchange carriers. With the advent of mobile telephony, telecommunications companies now include wireless carriers, or mobile network operators and even satellite providers (Iridium).

↑ Return to Menu

Data communication in the context of Speed of light

The speed of light in vacuum, often called simply speed of light and commonly denoted c, is a universal physical constant exactly equal to 299,792,458 metres per second (approximately 1 billion kilometres per hour; 700 million miles per hour). It is exact because, by international agreement, a metre is defined as the length of the path travelled by light in vacuum during a time interval of 1299792458 second. The speed of light is the same for all observers, no matter their relative velocity. It is the upper limit for the speed at which information, matter, or energy can travel through space.

All forms of electromagnetic radiation, including visible light, travel in vacuum at the speed c. For many practical purposes, light and other electromagnetic waves will appear to propagate instantaneously, but for long distances and sensitive measurements, their finite speed has noticeable effects. Much starlight viewed on Earth is from the distant past, allowing humans to study the history of the universe by viewing distant objects. When communicating with distant space probes, it can take hours for signals to travel. In computing, the speed of light fixes the ultimate minimum communication delay. The speed of light can be used in time of flight measurements to measure large distances to extremely high precision.

↑ Return to Menu

Data communication in the context of Entropy (information theory)

In information theory, the entropy of a random variable quantifies the average level of uncertainty or information associated with the variable's potential states or possible outcomes. This measures the expected amount of information needed to describe the state of the variable, considering the distribution of probabilities across all potential states. Given a discrete random variable , which may be any member within the set and is distributed according to , the entropy iswhere denotes the sum over the variable's possible values. The choice of base for , the logarithm, varies for different applications. Base 2 gives the unit of bits (or "shannons"), while base e gives "natural units" nat, and base 10 gives units of "dits", "bans", or "hartleys". An equivalent definition of entropy is the expected value of the self-information of a variable.

The concept of information entropy was introduced by Claude Shannon in his 1948 paper "A Mathematical Theory of Communication", and is also referred to as Shannon entropy. Shannon's theory defines a data communication system composed of three elements: a source of data, a communication channel, and a receiver. The "fundamental problem of communication" – as expressed by Shannon – is for the receiver to be able to identify what data was generated by the source, based on the signal it receives through the channel. Shannon considered various ways to encode, compress, and transmit messages from a data source, and proved in his source coding theorem that the entropy represents an absolute mathematical limit on how well data from the source can be losslessly compressed onto a perfectly noiseless channel. Shannon strengthened this result considerably for noisy channels in his noisy-channel coding theorem.

↑ Return to Menu

Data communication in the context of Computer network

In computer science, computer engineering, and telecommunications, a network is a group of communicating computers and peripherals known as hosts, which communicate data to other hosts via communication protocols, as facilitated by networking hardware.

Within a computer network, hosts are identified by network addresses, which allow networking hardware to locate and identify hosts. Hosts may also have hostnames, memorable labels for the host nodes, which can be mapped to a network address using a hosts file or a name server such as Domain Name Service. The physical medium that supports information exchange includes wired media like copper cables, optical fibers, and wireless radio-frequency media. The arrangement of hosts and hardware within a network architecture is known as the network topology.

↑ Return to Menu

Data communication in the context of Telecommunications cable

Telecommunications cable is a type of guided transmission medium. Telecommunications are based on transmitting and receiving modulated waves/signals through a medium. Types of telecommunications cable include: electrical cables when electric current is carried; transmission lines and waveguides when electromagnetic waves are transmitted; optical fibers when light signals are transmitted.

When the distances involved are very short, the term signal cable may be used, for analog or digital communication. A data cable is used in digital data communications. Data cabling must conform to certain standards and best practices to ensure reliable performance and safety. When the distance between the transmitter and receiver is very far, an unguided or wireless medium transmission may be used, based on antennas.

↑ Return to Menu

Data communication in the context of Data (computer science)

In computer science, data (treated as singular, plural, or as a mass noun) is any sequence of one or more symbols; datum is a single unit of data. Data requires interpretation to become information. Digital data is data that is represented using the binary number system of ones (1) and zeros (0), instead of analog representation. In modern (post-1960) computer systems, all data is digital.

Data exists in three states: data at rest, data in transit and data in use. Data within a computer, in most cases, moves as parallel data. Data moving to or from a computer, in most cases, moves as serial data. Data sourced from an analog device, such as a temperature sensor, may be converted to digital using an analog-to-digital converter. Data representing quantities, characters, or symbols on which operations are performed by a computer are stored and recorded on magnetic, optical, electronic, or mechanical recording media, and transmitted in the form of digital electrical or optical signals. Data pass in and out of computers via peripheral devices.

↑ Return to Menu

Data communication in the context of Paul Baran

Paul Baran (born Pesach Baran /ˈbærən/; April 29, 1926 – March 26, 2011) was a Polish-American engineer who was a pioneer in the development of computer networks. He was one of the two independent inventors of packet switching, which is today the dominant basis for data communications in computer networks worldwide, and went on to start several companies and develop other technologies that are an essential part of modern digital communication.

↑ Return to Menu

Data communication in the context of Donald Davies

Donald Watts Davies, CBE FRS (7 June 1924 – 28 May 2000) was a British computer scientist and Internet pioneer who was employed at the UK National Physical Laboratory (NPL).

During 1965-67 he invented modern data communications, including packet switching, high-speed routers, layered communication protocols, hierarchical computer networks and the essence of the end-to-end principle, concepts that are used today in computer networks worldwide. He envisioned, in 1966, that there would be a "single network" for data and telephone communications. Davies proposed and studied a commercial national data network in the United Kingdom and designed and built the first implementation of packet switching in the local-area NPL network in 1966-69 to demonstrate the technology. Many of the wide-area packet-switched networks built in the late 1960s and 1970s were similar "in nearly all respects" to his original 1965 design. Davies' work influenced the ARPANET in the United States and the CYCLADES project in France, and was key to the development of the data communications technology used in Internet, which is a network of networks.

↑ Return to Menu

Data communication in the context of Packet switching

In telecommunications, packet switching is a method of grouping data into short messages in fixed format, i.e., packets, that are transmitted over a telecommunications network. Packets consist of a header and a payload. Data in the header is used by networking hardware to direct the packet to its destination, where the payload is extracted and used by an operating system, application software, or higher layer protocols. Packet switching is the primary basis for data communications in computer networks worldwide.

During the early 1960s, American engineer Paul Baran developed a concept he called distributed adaptive message block switching as part of a research program at the RAND Corporation, funded by the United States Department of Defense. His proposal was to provide a fault-tolerant, efficient method for communication of voice messages using low-cost hardware to route the message blocks across a distributed network. His ideas contradicted then-established principles of pre-allocation of network bandwidth, exemplified by the development of telecommunications in the Bell System. The new concept found little resonance among network implementers until the independent work of Welsh computer scientist Donald Davies at the National Physical Laboratory beginning in 1965. Davies developed the concept for data communication using software switches in a high-speed computer network and coined the term packet switching. His work inspired numerous packet switching networks in the decade following, including the incorporation of the concept into the design of the ARPANET in the United States and the CYCLADES network in France. The ARPANET and CYCLADES were the primary precursor networks of the modern Internet.

↑ Return to Menu