Climate change mitigation in the context of Climate change scenario


Climate change mitigation in the context of Climate change scenario

Climate change mitigation Study page number 1 of 5

Play TriviaQuestions Online!

or

Skip to study material about Climate change mitigation in the context of "Climate change scenario"


⭐ Core Definition: Climate change mitigation

Climate change mitigation (or decarbonisation) is action to limit the greenhouse gases in the atmosphere that cause climate change. Climate change mitigation actions include conserving energy and replacing fossil fuels with clean energy sources. Secondary mitigation strategies include changes to land use and removing carbon dioxide (CO2) from the atmosphere. Recent assessments emphasize that global greenhouse gas emissions must peak before 2025 and decline by about 43% by 2030 to limit warming to 1.5 °C, requiring rapid transitions in energy, transport, and land-use systems. Current climate change mitigation policies are insufficient as they would still result in global warming of about 2.7 °C by 2100, significantly above the 2015 Paris Agreement's goal of limiting global warming to below 2 °C.

Solar energy and wind power can replace fossil fuels at the lowest cost compared to other renewable energy options. The availability of sunshine and wind is variable and can require electrical grid upgrades, such as using long-distance electricity transmission to group a range of power sources. Energy storage can also be used to even out power output, and demand management can limit power use when power generation is low. Cleanly generated electricity can usually replace fossil fuels for powering transportation, heating buildings, and running industrial processes. Certain processes are more difficult to decarbonise, such as air travel and cement production. Carbon capture and storage (CCS) can be an option to reduce net emissions in these circumstances, although fossil fuel power plants with CCS technology is currently a high-cost climate change mitigation strategy.

↓ Menu
HINT:

In this Dossier

Climate change mitigation in the context of Infrastructure

Infrastructure is the set of facilities and systems that serve a country, city, or other area, and encompasses the services and facilities necessary for its economy, households and firms to function. Infrastructure is composed of public and private physical structures such as roads, railways, bridges, airports, public transit systems, tunnels, water supply, sewers, electrical grids, and telecommunications (including Internet connectivity and broadband access). In general, infrastructure has been defined as "the physical components of interrelated systems providing commodities and services essential to enable, sustain, or enhance societal living conditions" and maintain the surrounding environment.

Especially in light of the massive societal transformations needed to mitigate and adapt to climate change, contemporary infrastructure conversations frequently focus on sustainable development and green infrastructure. Acknowledging this importance, the international community has created policy focused on sustainable infrastructure through the Sustainable Development Goals, especially Sustainable Development Goal 8 "Industry, Innovation and Infrastructure".

View the full Wikipedia page for Infrastructure
↑ Return to Menu

Climate change mitigation in the context of Social change

Social change is the alteration of the social order of a society which may include changes in social institutions, social behaviours or social relations. Sustained at a larger scale, it may lead to social transformation or societal transformation.

View the full Wikipedia page for Social change
↑ Return to Menu

Climate change mitigation in the context of Effects of climate change

Effects of climate change are well documented and growing for Earth's natural environment and human societies. Changes to the climate system include an overall warming trend, changes to precipitation patterns, and more extreme weather. As the climate changes it impacts the natural environment with effects such as more intense forest fires, thawing permafrost, and desertification. These changes impact ecosystems and societies, and can become irreversible once tipping points are crossed. Climate activists are engaged in a range of activities around the world that seek to ameliorate these issues or prevent them from happening.

The effects of climate change vary in timing and location. Up until now the Arctic has warmed faster than most other regions due to climate change feedbacks. Surface air temperatures over land have also increased at about twice the rate they do over the ocean, causing intense heat waves. These temperatures would stabilize if greenhouse gas emissions were brought under control. Ice sheets and oceans absorb the vast majority of excess heat in the atmosphere, delaying effects there but causing them to accelerate and then continue after surface temperatures stabilize. Sea level rise is a particular long term concern as a result. The effects of ocean warming also include marine heatwaves, ocean stratification, deoxygenation, and changes to ocean currents. The ocean is also acidifying as it absorbs carbon dioxide from the atmosphere.

View the full Wikipedia page for Effects of climate change
↑ Return to Menu

Climate change mitigation in the context of Climate conflict

Climate security is a political and policy framework that looks at the impacts of climate on security. Climate security often refers to the national and international security risks induced, directly or indirectly, by changes in climate patterns. It is a concept that summons the idea that climate-related change amplifies existing risks in society that endangers the security of humans, ecosystems, economy, infrastructure and societies. Climate-related security risks have far-reaching implications for the way the world manages peace and security. Climate actions to adapt and mitigate impacts can also have a negative effect on human security if mishandled.

The term climate security was initially promoted by national security analysts in the US and later Europe, but has since been adopted by a wide variety of actors including the United Nations, low and middle income states, civil society organizations and academia. The term is used in fields such as politics, diplomacy, environment and security with increasing frequency.

View the full Wikipedia page for Climate conflict
↑ Return to Menu

Climate change mitigation in the context of Environmental law

Environmental laws are laws that protect the environment. The term "environmental law" encompasses treaties, statutes, regulations, conventions, and policies designed to protect the natural environment and manage the impact of human activities on ecosystems and natural resources, such as forests, minerals, or fisheries. It addresses issues such as pollution control, resource conservation, biodiversity protection, climate change mitigation, and sustainable development. As part of both national and international legal frameworks, environmental law seeks to balance environmental preservation with economic and social needs, often through regulatory mechanisms, enforcement measures, and incentives for compliance.

The field emerged prominently in the mid-20th century as industrialization and environmental degradation spurred global awareness, culminating in landmark agreements like the 1972 Stockholm Conference and the 1992 Rio Declaration. Key principles include the precautionary principle, the polluter pays principle, and intergenerational equity. Modern environmental law intersects with human rights, international trade, and energy policy.

View the full Wikipedia page for Environmental law
↑ Return to Menu

Climate change mitigation in the context of Climate change adaptation

Climate change adaptation is the process of adjusting to the effects of climate change, both current and anticipated. Adaptation aims to moderate or avoid harm for people, and is usually done alongside climate change mitigation. It also aims to exploit opportunities. Adaptation can involve interventions to help natural systems cope with changes.

Adaptation can help manage impacts and risks to people and nature. The four types of adaptation actions are infrastructural, institutional, behavioural and nature-based options. Some examples are building seawalls or inland flood defenses, providing new insurance schemes, changing crop planting times or varieties, and installing green roofs or green spaces. Adaptation can be reactive (responding to climate impacts as they happen) or proactive (taking steps in anticipation of future climate change).

View the full Wikipedia page for Climate change adaptation
↑ Return to Menu

Climate change mitigation in the context of Biomass

Biomass is a term used in several contexts: in the context of ecology it means living organisms, and in the context of bioenergy it means matter from recently living (but now dead) organisms. In the latter context, there are variations in how biomass is defined, e.g., only from plants, from plants and algae, from plants and animals. The vast majority of biomass used for bioenergy does come from plants and fecal matter. Bioenergy is a type of renewable energy that the bioenergy industry claims has the potential to assist with climate change mitigation.

View the full Wikipedia page for Biomass
↑ Return to Menu

Climate change mitigation in the context of Deforestation and climate change

Deforestation is a primary contributor to climate change, and climate change affects the health of forests. Land use change, especially in the form of deforestation, is the second largest source of carbon dioxide emissions from human activities, after the burning of fossil fuels. Greenhouse gases are emitted from deforestation during the burning of forest biomass and decomposition of remaining plant material and soil carbon. Global models and national greenhouse gas inventories give similar results for deforestation emissions. As of 2019, deforestation is responsible for about 11% of global greenhouse gas emissions. Carbon emissions from tropical deforestation are accelerating.

When forests grow they are a carbon sink and therefore have potential to mitigate the effects of climate change. Some of the effects of climate change, such as more wildfires, invasive species, and more extreme weather events can lead to more forest loss. The relationship between deforestation and climate change is one of a positive (amplifying) climate feedback. The more trees that are removed equals larger effects of climate change which, in turn, results in the loss of more trees.

View the full Wikipedia page for Deforestation and climate change
↑ Return to Menu

Climate change mitigation in the context of Congo Basin

The Congo Basin (French: Bassin du Congo) is the sedimentary basin of the Congo River. The Congo Basin is located in Central Africa, in a region known as west equatorial Africa. The Congo Basin region is sometimes known simply as the Congo. It contains some of the largest tropical rainforests in the world and is an important source of water used in agriculture and energy generation.

The rainforest in the Congo Basin is the largest rainforest in Africa and second only to the Amazon rainforest in size, with 300 million hectares compared to the 800 million hectares in the Amazon. Because of its size and diversity the basin's forest is important for mitigating climate change in its role as a carbon sink. However, deforestation and degradation of the ecology by the impacts of climate change may increase stress on the forest ecosystem, in turn making the hydrology of the basin more variable. A 2012 study found that the variability in precipitation caused by climate change will negatively affect economic activity in the basin.

View the full Wikipedia page for Congo Basin
↑ Return to Menu

Climate change mitigation in the context of Wind power

Wind power is the use of wind energy to generate useful work. Historically, wind power was used by sails, windmills and windpumps, but today it is mostly used to generate electricity. This article deals only with wind power for electricity generation.Today, wind power is generated almost completely using wind turbines, generally grouped into wind farms and connected to the electrical grid.

In 2024, wind supplied about 2,500 TWh of electricity, which was over 8% of world electricity. With about 100 GW added during 2021, mostly in China and the United States, global installed wind power capacity exceeded 800 GW. 30 countries generated more than a tenth of their electricity from wind power in 2024 and wind generation has nearly tripled since 2015. To help meet the Paris Agreement goals to limit climate change, analysts say it should expand much faster – by over 1% of electricity generation per year.

View the full Wikipedia page for Wind power
↑ Return to Menu

Climate change mitigation in the context of Soil conservation

Soil conservation is the prevention of loss of the topmost layer of the soil from erosion or prevention of reduced fertility caused by over usage, acidification, salinization or other chemical soil contamination.

Slash-and-burn and other unsustainable methods of subsistence farming are practiced in some lesser developed areas. A consequence of deforestation is typically large-scale erosion, loss of soil nutrients and sometimes total desertification. Techniques for improved soil conservation include crop rotation, cover crops, conservation tillage and planted windbreaks, affect both erosion and fertility. When plants die, they decay and become part of the soil. Code 330 defines standard methods recommended by the U.S. Natural Resources Conservation Service. Farmers have practiced soil conservation for millennia. In Europe, policies such as the Common Agricultural Policy are targeting the application of best management practices such as reduced tillage, winter cover crops, plant residues and grass margins in order to better address soil conservation. Political and economic action is further required to solve the erosion problem. A simple governance hurdle concerns how we value the land and this can be changed by cultural adaptation. Soil carbon is a carbon sink, playing a role in climate change mitigation.

View the full Wikipedia page for Soil conservation
↑ Return to Menu

Climate change mitigation in the context of G20

The G20 or Group of 20 is an intergovernmental forum comprising 19 sovereign countries, the European Union (EU), and the African Union (AU). It works to address major issues related to the global economy, such as international financial stability, climate change mitigation and sustainable development, through annual meetings of heads of state and heads of government.

The 19 member states of the G20 account for around 85% of gross world product (GWP), 75% of international trade, 56% of the global population, and 60% of the world's land area; including the EU and AU, the G20 comprises 78.9% of global population and 83.9% of global CO2 emissions from fossil energy.

View the full Wikipedia page for G20
↑ Return to Menu

Climate change mitigation in the context of Green industrial policy

Green industrial policy (GIP) is strategic government policy that attempts to accelerate the development and growth of green industries to transition towards a low-carbon economy. Green industrial policy is necessary because green industries such as renewable energy and low-carbon public transportation infrastructure face high costs and many risks in terms of the market economy. Therefore, they need support from the public sector in the form of industrial policy until they become commercially viable. Natural scientists warn that immediate action must occur to lower greenhouse gas emissions and mitigate the effects of climate change. Social scientists argue that the mitigation of climate change requires state intervention and governance reform. Thus, governments use GIP to address the economic, political, and environmental issues of climate change. GIP is conducive to sustainable economic, institutional, and technological transformation. It goes beyond the free market economic structure to address market failures and commitment problems that hinder sustainable investment. Effective GIP builds political support for carbon regulation, which is necessary to transition towards a low-carbon economy. Several governments use different types of GIP that lead to various outcomes. The Green Industry plays a pivotal role in creating a sustainable and environmentally responsible future; By prioritizing resource efficiency, renewable energy, and eco-friendly practices, this industry significantly benefits society and the planet at large.

GIP and industrial policy are similar, although GIP has unique challenges and goals. GIP faces the particular challenge of reconciling economic and environmental issues. It deals with a high degree of uncertainty about green investment profitability. Furthermore, it addresses the reluctance of industry to invest in green development, and it helps current governments influence future climate policy.

View the full Wikipedia page for Green industrial policy
↑ Return to Menu

Climate change mitigation in the context of Biofuel

Biofuel is a fuel that is produced over a short time span from biomass, rather than by the very slow natural processes involved in the formation of fossil fuels such as oil. Biofuel can be produced from plants or from agricultural, domestic or industrial bio waste. Biofuels are mostly used for transportation, but can also be used for heating and electricity. Biofuels (and bio energy in general) are regarded as a renewable energy source. The use of biofuel has been subject to criticism regarding the "food vs fuel" debate, varied assessments of their sustainability, and ongoing deforestation and biodiversity loss as a result of biofuel production.

In general, biofuels emit fewer greenhouse gas emissions when burned in an engine and are generally considered carbon-neutral fuels as the carbon emitted has been captured from the atmosphere by the crops used in production. However, life-cycle assessments of biofuels have shown large emissions associated with the potential land-use change required to produce additional biofuel feedstocks. The outcomes of lifecycle assessments (LCAs) for biofuels are highly situational and dependent on many factors including the type of feedstock, production routes, data variations, and methodological choices. Estimates about the climate impact from biofuels vary widely based on the methodology and exact situation examined. Therefore, the climate change mitigation potential of biofuel varies considerably: in some scenarios emission levels are comparable to fossil fuels, and in other scenarios the biofuel emissions result in negative emissions.

View the full Wikipedia page for Biofuel
↑ Return to Menu

Climate change mitigation in the context of Alternative fuel

Alternative fuels, also known as non-conventional and advanced fuels, are fuels derived from sources other than petroleum. Alternative fuels include gaseous fossil fuels like propane, natural gas, methane, and ammonia; biofuels like biodiesel, bioalcohol, and refuse-derived fuel; and other renewable fuels like hydrogen and electricity.

These fuels are intended to substitute for more carbon intensive energy sources like gasoline and diesel in transportation and can help to contribute to decarbonization and reductions in pollution. Alternative fuel is also shown to reduce non-carbon emissions such as the release of nitric oxide and nitrogen dioxide, as well as sulfur dioxide and other harmful gases in the exhaust. This is especially important in industries such as mining, where toxic gases can accumulate more easily.

View the full Wikipedia page for Alternative fuel
↑ Return to Menu

Climate change mitigation in the context of Carbon sequestration

Carbon sequestration is a natural process of storing carbon in a carbon pool. It plays a crucial role in effectively managing the global carbon cycle and limiting climate change by reducing the amount of carbon dioxide in the atmosphere. There are two main types of carbon sequestration: biologic (also called biosequestration) and geologic.

Biologic carbon sequestration is a naturally occurring process as part of the carbon cycle. Humans can enhance it through deliberate actions and use of technology. Carbon dioxide (CO
2
) is naturally captured from the atmosphere through biological, chemical, and physical processes. These processes can be accelerated for example through changes in land use and agricultural practices, called carbon farming. Artificial processes have also been devised to produce similar effects. This approach is called carbon capture and storage. It involves using technology to capture and sequester (store) CO
2
that is produced from human activities underground or under the sea bed.

View the full Wikipedia page for Carbon sequestration
↑ Return to Menu