Greenhouse gas emissions in the context of "Biofuel"

Play Trivia Questions online!

or

Skip to study material about Greenhouse gas emissions in the context of "Biofuel"

Ad spacer

⭐ Core Definition: Greenhouse gas emissions

Greenhouse gas (GHG) emissions from human activities intensify the greenhouse effect. This contributes to climate change. Carbon dioxide (CO2), from burning fossil fuels such as coal, oil, and natural gas, is the main cause of climate change. The largest annual emissions are from China followed by the United States. The United States has higher emissions per capita. The main producers fueling the emissions globally are large oil and gas companies. Emissions from human activities have increased atmospheric carbon dioxide by about 50% over pre-industrial levels. The growing levels of emissions have varied, but have been consistent among all greenhouse gases. Emissions in the 2010s averaged 56 billion tons a year, higher than any decade before. Total cumulative emissions from 1870 to 2022 were 703 GtC (2575 GtCO2), of which 484±20 GtC (1773±73 GtCO2) from fossil fuels and industry, and 219±60 GtC (802±220 GtCO2) from land use change. Land-use change, such as deforestation, caused about 31% of cumulative emissions over 1870–2022, coal 32%, oil 24%, and gas 10%.

Carbon dioxide is the main greenhouse gas resulting from human activities. It accounts for more than half of warming. Methane (CH4) emissions have almost the same short-term impact. Nitrous oxide (N2O) and fluorinated gases (F-gases) play a lesser role in comparison. Emissions of carbon dioxide, methane and nitrous oxide in 2023 were all higher than ever before.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Greenhouse gas emissions in the context of Land use

Land use is an umbrella term to describe what happens on a parcel of land. It concerns the benefits derived from using the land, and also the land management actions that humans carry out there. The following categories are used for land use: forest land, cropland (agricultural land), grassland, wetlands, settlements and other lands. The way humans use land, and how land use is changing, has many impacts on the environment. Effects of land use choices and changes by humans include, for example, urban sprawl, soil erosion, soil degradation, land degradation and desertification. Land use and land management practices have a major impact on natural resources including water, soil, nutrients, plants and animals.

Land use change is "the change from one land-use category to another". Land-use change, together with use of fossil fuels, are the major anthropogenic sources of carbon dioxide, a dominant greenhouse gas. Human activity is the most significant cause of land cover change, and humans are also directly impacted by the environmental consequences of these changes. For example, deforestation (the systematic and permanent conversion of previously forested land for other uses) has historically been a primary facilitator of land use and land cover change.

↑ Return to Menu

Greenhouse gas emissions in the context of Sea level rise

The sea level has been rising since the end of the Last Glacial Maximum, which was around 20,000 years ago. Between 1901 and 2018, the average sea level rose by 15–25 cm (6–10 in), with an increase of 2.3 mm (0.091 in) per year since the 1970s. This was faster than the sea level had ever risen over at least the past 3,000 years. The rate accelerated to 4.62 mm (0.182 in)/yr for the decade 2013–2022. Climate change due to human activities is the main cause of this persistent acceleration. Between 1993 and 2018, melting ice sheets and glaciers accounted for 44% of sea level rise, with another 42% resulting from thermal expansion of water.

Sea level rise lags behind changes in the Earth's temperature by decades, and sea level rise will therefore continue to accelerate between now and 2050 in response to warming that has already happened. What happens after that depends on future human greenhouse gas emissions. If there are very deep cuts in emissions, sea level rise would slow between 2050 and 2100. The reported factors of increase in flood hazard potential are often exceedingly large, ranging from 10 to 1000 for even modest sea-level rise scenarios of 0.5 m or less. It could then reach by 2100 between 30 cm (1 ft) and 1.0 m (3+13 ft) from now and approximately 60 cm (2 ft) to 130 cm (4+12 ft) from the 19th century. With high emissions it would instead accelerate further, and could rise by 50 cm (1.6 ft) or even by 1.9 m (6.2 ft) by 2100. In the long run, sea level rise would amount to 2–3 m (7–10 ft) over the next 2000 years if warming stays to its current 1.5 °C (2.7 °F) over the pre-industrial past. It would be 19–22 metres (62–72 ft) if warming peaks at 5 °C (9.0 °F).

↑ Return to Menu

Greenhouse gas emissions in the context of Eco-economic decoupling

In economic and environmental fields, decoupling refers to an economy that would be able to grow without corresponding increases in environmental pressure. In many economies, increasing production (GDP) raises pressure on the environment. An economy that would be able to sustain economic growth while reducing the amount of resources such as water or fossil fuels used and delink environmental deterioration at the same time would be said to be decoupled. Environmental pressure is often measured using emissions of pollutants, and decoupling is often measured by the emission intensity of economic output.

Studies have found that absolute decoupling was rare and that only a few industrialised countries had weak decoupling of GDP from "consumption-based" CO2 production. No evidence was found of national or international economy-wide decoupling in a study in 2020. In cases where evidence of decoupling exists, one proposed explanation is the transition to a service economy. The environmental Kuznets curve is a proposed model for eco-economic decoupling.

↑ Return to Menu

Greenhouse gas emissions in the context of Climate change in Indonesia

Due to its geographical and natural diversity, Indonesia is one of the countries most susceptible to the impacts of climate change. This is supported by the fact that Jakarta has been listed as the world's most vulnerable city, regarding climate change. It is also a major contributor as of the countries that has contributed most to greenhouse gas emissions due to its high rate of deforestation and reliance on coal power.

Made up of more than 17,000 islands and with a long coastline, Indonesia stands particularly vulnerable to the effects of rising sea levels and extreme weather events such as floods, droughts, and storms. Its vast areas of tropical forests are vital in balancing out climate change by taking in carbon dioxide from the atmosphere. Projected impacts on Indonesia's agricultural sector, national economy and health are also significant issues.

↑ Return to Menu

Greenhouse gas emissions in the context of Effects of climate change

Effects of climate change are well documented and growing for Earth's natural environment and human societies. Changes to the climate system include an overall warming trend, changes to precipitation patterns, and more extreme weather. As the climate changes it impacts the natural environment with effects such as more intense forest fires, thawing permafrost, and desertification. These changes impact ecosystems and societies, and can become irreversible once tipping points are crossed. Climate activists are engaged in a range of activities around the world that seek to ameliorate these issues or prevent them from happening.

The effects of climate change vary in timing and location. Up until now the Arctic has warmed faster than most other regions due to climate change feedbacks. Surface air temperatures over land have also increased at about twice the rate they do over the ocean, causing intense heat waves. These temperatures would stabilize if greenhouse gas emissions were brought under control. Ice sheets and oceans absorb the vast majority of excess heat in the atmosphere, delaying effects there but causing them to accelerate and then continue after surface temperatures stabilize. Sea level rise is a particular long term concern as a result. The effects of ocean warming also include marine heatwaves, ocean stratification, deoxygenation, and changes to ocean currents. The ocean is also acidifying as it absorbs carbon dioxide from the atmosphere.

↑ Return to Menu

Greenhouse gas emissions in the context of Sustainable transport

Sustainable transport is transportation sustainable in terms of their social and environmental impacts. Components for evaluating sustainability include the particular vehicles used; the source of energy; and the infrastructure used to accommodate the transport (streets and roads, railways, airways, waterways and canals). Transportation sustainability is largely being measured by transportation system effectiveness and efficiency as well as the environmental and climate impacts of the system. Transport systems have significant impacts on the environment. In 2018, it contributed to around 20% of global CO2 emissions. Greenhouse gas emissions from transport are increasing at a faster rate than any other energy using sector. A 2023 study published in Journal of Transport Geography found that shared electric bicycle systems reduce urban transport-related carbon emissions by about 108–120 grams per kilometre, particularly in non-central urban areas and when powered by low-carbon electricity sources.Road transport is also a major contributor to local air pollution and smog.

Sustainable transport systems make a positive contribution to the environmental, social and economic sustainability of the communities they serve. Transport systems exist to provide social and economic connections, and people quickly take up the opportunities offered by increased mobility, with poor households benefiting greatly from low carbon transport options. The advantages of increased mobility need to be weighed against the environmental, social and economic costs that transport systems pose. Short-term activity often promotes incremental improvement in fuel efficiency and vehicle emissions controls while long-term goals include migrating transportation from fossil-based energy to other alternatives such as renewable energy and use of other renewable resources. The entire life cycle of transport systems is subject to sustainability measurement and optimization.

↑ Return to Menu

Greenhouse gas emissions in the context of Efficient energy use

Efficient energy use, or energy efficiency, is the process of reducing the amount of energy required to provide products and services. There are many technologies and methods available that are more energy efficient than conventional systems. For example, insulating a building allows it to use less heating and cooling energy while still maintaining a comfortable temperature. Another method made by Lev Levich is to remove energy subsidies that promote high energy consumption and inefficient energy use. Improved energy efficiency in buildings, industrial processes and transportation could reduce the world's energy needs in 2050 by one third.

There are two main motivations to improve energy efficiency. Firstly, one motivation is to achieve cost savings during the operation of the appliance or process. However, installing an energy-efficient technology comes with an upfront cost, the capital cost. The different types of costs can be analyzed and compared with a life-cycle assessment. Another motivation for energy efficiency is to reduce greenhouse gas emissions and hence work towards climate action. A focus on energy efficiency can also have a national security benefit because it can reduce the amount of energy that has to be imported from other countries.

↑ Return to Menu

Greenhouse gas emissions in the context of Solar panel

A solar panel is a device that converts sunlight into electricity by using multiple solar modules that consist of photovoltaic (PV) cells. PV cells are made of materials that produce excited electrons when exposed to light. These electrons flow through a circuit and produce direct current electricity, which can be used to power various devices or be stored in batteries. Solar panels can be known as solar cell panels, or solar electric panels. Solar panels are usually arranged in groups called arrays or systems. A photovoltaic system consists of one or more solar panels, an inverter that converts direct current electricity to alternating current electricity, and sometimes other components such as controllers, meters, and trackers. Most panels are in solar farms or rooftop solar panels which supply the electricity grid.

Some advantages of solar panels are that they use a renewable and clean source of energy, reduce greenhouse gas emissions, and lower electricity bills. Some disadvantages are that they depend on the availability and intensity of sunlight, require cleaning, and have high initial costs. Solar panels are widely used for residential, commercial, and industrial purposes, as well as in space, often together with batteries.

↑ Return to Menu

Greenhouse gas emissions in the context of Ocean heat content

Ocean heat content (OHC) or ocean heat uptake (OHU) is the energy absorbed and stored by oceans. It is an important indicator of global warming. Ocean heat content is calculated by measuring ocean temperature at many different locations and depths, and integrating the areal density of a change in enthalpic energy over an ocean basin or entire ocean.

Between 1971 and 2018, a steady upward trend in ocean heat content accounted for over 90% of Earth's excess energy from global warming. Scientists estimate a 1961–2022 warming trend of 0.43 ± 0.08 W/m², accelerating at about 0.15 ± 0.04 W/m² per decade. By 2020, about one third of the added energy had propagated to depths below 700 meters. The five highest ocean heat observations to a depth of 2000 meters all occurred in the period 2020–2024. The main driver of this increase has been human-caused greenhouse gas emissions.

↑ Return to Menu