Chromatography in the context of "Laboratory technique"

Play Trivia Questions online!

or

Skip to study material about Chromatography in the context of "Laboratory technique"




⭐ Core Definition: Chromatography

In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. The mixture is dissolved in a fluid solvent (gas or liquid) called the mobile phase, which carries it through a system (a column, a capillary tube, a plate, or a sheet) on which a material called the stationary phase is fixed. As the different constituents of the mixture tend to have different affinities for the stationary phase and are retained for different lengths of time depending on their interactions with its surface sites, the constituents travel at different apparent velocities in the mobile fluid, causing them to separate. The separation is based on the differential partitioning between the mobile and the stationary phases. Subtle differences in a compound's partition coefficient result in differential retention on the stationary phase and thus affect the separation.

Chromatography may be preparative or analytical. The purpose of preparative chromatography is to separate the components of a mixture for later use, and is thus a form of purification. This process is associated with higher costs due to its mode of production. Analytical chromatography is done normally with smaller amounts of material and is for establishing the presence or measuring the relative proportions of analytes in a mixture. The two types are not mutually exclusive.

↓ Menu

In this Dossier

Chromatography in the context of Biogenic

A biogenic substance is a product made by or of life forms. While the term originally was specific to metabolite compounds that had toxic effects on other organisms, it has developed to encompass any constituents, secretions, and metabolites of plants or animals. In context of molecular biology, biogenic substances are referred to as biomolecules. They are generally isolated and measured through the use of chromatography and mass spectrometry techniques. Additionally, the transformation and exchange of biogenic substances can by modelled in the environment, particularly their transport in waterways.

The observation and measurement of biogenic substances is notably important in the fields of geology and biochemistry. A large proportion of isoprenoids and fatty acids in geological sediments are derived from plants and chlorophyll, and can be found in samples extending back to the Precambrian. These biogenic substances are capable of withstanding the diagenesis process in sediment, but may also be transformed into other materials. This makes them useful as biomarkers for geologists to verify the age, origin and degradation processes of different rocks.

↑ Return to Menu

Chromatography in the context of Work-up (chemistry)

In chemistry, work-up refers to the series of manipulations required to isolate and purify the product(s) of a chemical reaction. The term is used colloquially to refer to these manipulations, which may include:

The work-up steps required for a given chemical reaction may require one or more of these manipulations. Work-up steps are not always explicitly shown in reaction schemes. Written experimental procedures will describe work-up steps but will usually not formally refer to them as a work-up.

↑ Return to Menu

Chromatography in the context of List of purification methods in chemistry

Purification in a chemical context is the physical separation of a chemical substance of interest from foreign or contaminating substances. Pure results of a successful purification process are termed isolate. The following list of chemical purification methods should not be considered exhaustive.

  • Affinity purification purifies proteins by retaining them on a column through their affinity to antibodies, enzymes, or receptors that have been immobilised on the column.
  • Filtration is a mechanical method to separate solids from liquids or gases by passing the feed stream through a porous sheet such as a cloth or membrane, which retains the solids and allows the liquid to pass through.
  • Centrifugation is a process that uses an electric motor to spin a vessel of fluid at high speed to make heavier components settle to the bottom of the vessel.
  • Evaporation removes volatile liquids from non-volatile solutes, which cannot be done through filtration due to the small size of the substances.
  • Liquid–liquid extraction removes an impurity or recovers a desired product by dissolving the crude material in a solvent in which other components of the feed material are soluble.
  • Crystallization separates a product from a liquid feed stream, often in extremely pure form, by cooling the feed stream or adding precipitants that lower the solubility of the desired product so that it forms crystals. The pure solid crystals are then separated from the remaining liquor by filtration or centrifugation.
  • Recrystallization: In analytical and synthetic chemistry work, purchased reagents of doubtful purity may be recrystallised, e.g. dissolved in a very pure solvent, and then crystallized, and the crystals recovered, in order to improve and/or verify their purity.
  • Trituration removes highly soluble impurities from usually solid insoluble material by rinsing it with an appropriate solvent.
  • Adsorption removes a soluble impurity from a feed stream by trapping it on the surface of a solid material, such as activated carbon, that forms strong non-covalent chemical bonds with the impurity.
  • Chromatography employs continuous adsorption and desorption on a packed bed of a solid to purify multiple components of a single feed stream. In a laboratory setting, mixture of dissolved materials are typically fed using a solvent into a column packed with an appropriate adsorbent, and due to different affinities for solvent (moving phase) versus adsorbent (stationary phase) the components in the original mixture pass through the column in the moving phase at different rates, which thus allows to selectively collect desired materials out of the initial mixture.
  • Smelting produces metals from raw ore, and involves adding chemicals to the ore and heating it up to the melting point of the metal.
  • Refining is used primarily in the petroleum industry, whereby crude oil is heated and separated into stages according to the condensation points of the various elements.
  • Distillation, widely used in petroleum refining and in purification of ethanol separates volatile liquids on the basis of their relative volatilities. There are several type of distillation: simple distillation, steam distillation etc.
  • Water purification combines a number of methods to produce potable or drinking water.
  • Downstream processing refers to purification of chemicals, pharmaceuticals and food ingredients produced by fermentation or synthesized by plant and animal tissues, for example antibiotics, citric acid, vitamin E, and insulin.
  • Fractionation refers to a purification strategy in which some relatively inefficient purification method is repeatedly applied to isolate the desired substance in progressively greater purity.
  • Electrolysis refers to the breakdown of substances using an electric current. This removes impurities in a substance that an electric current is run through
  • Sublimation is the process of changing of any substance (usually on heating) from a solid to a gas (or from gas to a solid) without passing through liquid phase. In terms of purification - material is heated, often under vacuum, and the vapors of the material are then condensed back to a solid on a cooler surface. The process thus in its essence is similar to distillation, however the material which is condensed on the cooler surface then has to be removed mechanically, thus requiring different laboratory equipment.
  • Bioleaching is the extraction of metals from their ores through the use of living organisms.

Separation process

↑ Return to Menu

Chromatography in the context of Chemical ecology

Chemical ecology is a vast and interdisciplinary field utilizing biochemistry, biology, ecology, and organic chemistry for explaining observed interactions of living things and their environment through chemical compounds (e.g. ecosystem resilience and biodiversity). Early examples of the field trace back to experiments with the same plant genus in different environments, interaction of plants and butterflies, and the behavioral effect of catnip. Chemical ecologists seek to identify the specific molecules (i.e. semiochemicals) that function as signals mediating community or ecosystem processes and to understand the evolution of these signals. The chemicals behind such roles are typically small, readily-diffusible organic molecules that act over various distances that are dependent on the environment (i.e. terrestrial or aquatic) but can also include larger molecules and small peptides.

In practice, chemical ecology relies on chromatographic techniques, such as thin-layer chromatography, high performance liquid chromatography, gas chromatography, mass spectrometry (MS), and absolute configuration utilizing nuclear magnetic resonance (NMR) to isolate and identify bioactive metabolites. To identify molecules with the sought-after activity, chemical ecologists often make use of bioassay-guided fractionation. Today, chemical ecologists also incorporate genetic and genomic techniques to understand the biosynthetic and signal transduction pathways underlying chemically mediated interactions.

↑ Return to Menu

Chromatography in the context of Dipicolinic acid

Dipicolinic acid (pyridine-2,6-dicarboxylic acid or PDC and DPA) is a chemical compound which plays a role in the heat resistance of bacterial endospores. It is also used to prepare dipicolinato ligated lanthanide and transition metal complexes for ion chromatography.

↑ Return to Menu

Chromatography in the context of Clinical chemistry

Clinical chemistry (also known as chemical pathology, clinical biochemistry or medical biochemistry) is a division in pathology and medical laboratory sciences focusing on qualitative tests of important compounds, referred to as analytes or markers, in bodily fluids and tissues using analytical techniques and specialized instruments. This interdisciplinary field includes knowledge from medicine, biology, chemistry, biomedical engineering, informatics, and an applied form of biochemistry (not to be confused with medicinal chemistry, which involves basic research for drug development).

The discipline originated in the late 19th century with the use of simple chemical reaction tests for various components of blood and urine. Many decades later, clinical chemists use automated analyzers in many clinical laboratories. These instruments perform experimental techniques ranging from pipetting specimens and specimen labelling to advanced measurement techniques such as spectrometry, chromatography, photometry, potentiometry, etc. These instruments provide different results that help identify uncommon analytes, changes in light and electronic voltage properties of naturally occurring analytes such as enzymes, ions, electrolytes, and their concentrations, all of which are important for diagnosing diseases.

↑ Return to Menu

Chromatography in the context of Analytical chemistry

Analytical chemistry (or chemical analysis) is the branch of chemistry concerned with the development and application of methods to identify the chemical composition of materials and quantify the amounts of components in mixtures. It focuses on methods to identify unknown compounds, possibly in a mixture or solution, and quantify a compound's presence in terms of amount of substance (in any phase), concentration (in aqueous or solution phase), percentage by mass or number of moles in a mixture of compounds (or partial pressure in the case of gas phase).

It encompasses both classical techniques (e.g. titration, gravimetric analysis) and modern instrumental approaches (e.g. spectroscopy, chromatography, mass spectrometry, electrochemical methods). Modern analytical chemistry is deeply intertwined with data analysis and chemometrics, and is increasingly shaped by trends such as automation, miniaturization, and real-time sensing, with applications across fields as diverse as biochemistry, medicinal chemistry, forensic science, archaeology, nutritional science, agricultural chemistry, chemical synthesis, metallurgy, chemical engineering and materials science.

↑ Return to Menu