Mass spectrometry in the context of "Biogenic"

Play Trivia Questions online!

or

Skip to study material about Mass spectrometry in the context of "Biogenic"

Ad spacer

⭐ Core Definition: Mass spectrometry

Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a mass spectrum, a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is used in many different fields and is applied to pure samples as well as complex mixtures.

A mass spectrum is a type of plot of the ion signal as a function of the mass-to-charge ratio. These spectra are used to determine the elemental or isotopic signature of a sample, the masses of particles and of molecules, and to elucidate the chemical identity or structure of molecules and other chemical compounds.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Mass spectrometry in the context of Biogenic

A biogenic substance is a product made by or of life forms. While the term originally was specific to metabolite compounds that had toxic effects on other organisms, it has developed to encompass any constituents, secretions, and metabolites of plants or animals. In context of molecular biology, biogenic substances are referred to as biomolecules. They are generally isolated and measured through the use of chromatography and mass spectrometry techniques. Additionally, the transformation and exchange of biogenic substances can by modelled in the environment, particularly their transport in waterways.

The observation and measurement of biogenic substances is notably important in the fields of geology and biochemistry. A large proportion of isoprenoids and fatty acids in geological sediments are derived from plants and chlorophyll, and can be found in samples extending back to the Precambrian. These biogenic substances are capable of withstanding the diagenesis process in sediment, but may also be transformed into other materials. This makes them useful as biomarkers for geologists to verify the age, origin and degradation processes of different rocks.

↓ Explore More Topics
In this Dossier

Mass spectrometry in the context of Spectrum (physical sciences)

In the physical sciences, spectrum describes any continuous range of either frequency or wavelength values. The term initially referred to the range of observed colors as white light is dispersed through a prism — introduced to optics by Isaac Newton in the 17th century.

The concept was later expanded to other waves, such as sound waves and sea waves that also present a variety of frequencies and wavelengths (e.g., noise spectrum, sea wave spectrum). Starting from Fourier analysis, the concept of spectrum expanded to signal theory, where the signal can be graphed as a function of frequency and information can be placed in selected ranges of frequency. Presently, any quantity directly dependent on, and measurable along the range of, a continuous independent variable can be graphed along its range or spectrum. Examples are the range of electron energy in electron spectroscopy or the range of mass-to-charge ratio in mass spectrometry.

↑ Return to Menu

Mass spectrometry in the context of Fourier transform spectroscopy

Fourier-transform spectroscopy (FTS) is a measurement technique whereby spectra are collected based on measurements of the coherence of a radiative source, using time-domain or space-domain measurements of the radiation, electromagnetic or not. It can be applied to a variety of types of spectroscopy including optical spectroscopy, infrared spectroscopy (FTIR, FT-NIRS), nuclear magnetic resonance (NMR) and magnetic resonance spectroscopic imaging (MRSI), mass spectrometry and electron spin resonance spectroscopy.

There are several methods for measuring the temporal coherence of the light (see: field-autocorrelation), including the continuous-wave and the pulsed Fourier-transform spectrometer or Fourier-transform spectrograph.The term "Fourier-transform spectroscopy" reflects the fact that in all these techniques, a Fourier transform is required to turn the raw data into the actual spectrum, and in many of the cases in optics involving interferometers, is based on the Wiener–Khinchin theorem.

↑ Return to Menu

Mass spectrometry in the context of Protonation

In chemistry, protonation (or hydronation) is the adding of a proton (or hydron, or hydrogen cation), usually denoted by H, to an atom, molecule, or ion, forming a conjugate acid. (The complementary process, when a proton is removed from a Brønsted–Lowry acid, is deprotonation.) Some examples include

Protonation is a fundamental chemical reaction and is a step in many stoichiometric and catalytic processes. Some ions and molecules can undergo more than one protonation and are labeled polybasic, which is true of many biological macromolecules. Protonation and deprotonation (removal of a proton) occur in most acid–base reactions; they are the core of most acid–base reaction theories. A Brønsted–Lowry acid is defined as a chemical substance that protonates another substance. Upon protonating a substrate, the mass and the charge of the species each increase by one unit, making it an essential step in certain analytical procedures such as electrospray mass spectrometry. Protonating or deprotonating a molecule or ion can change many other chemical properties, not just the charge and mass, for example solubility, hydrophilicity, reduction potential or oxidation potential, and optical properties can change.

↑ Return to Menu

Mass spectrometry in the context of Analytical chemistry

Analytical chemistry (or chemical analysis) is the branch of chemistry concerned with the development and application of methods to identify the chemical composition of materials and quantify the amounts of components in mixtures. It focuses on methods to identify unknown compounds, possibly in a mixture or solution, and quantify a compound's presence in terms of amount of substance (in any phase), concentration (in aqueous or solution phase), percentage by mass or number of moles in a mixture of compounds (or partial pressure in the case of gas phase).

It encompasses both classical techniques (e.g. titration, gravimetric analysis) and modern instrumental approaches (e.g. spectroscopy, chromatography, mass spectrometry, electrochemical methods). Modern analytical chemistry is deeply intertwined with data analysis and chemometrics, and is increasingly shaped by trends such as automation, miniaturization, and real-time sensing, with applications across fields as diverse as biochemistry, medicinal chemistry, forensic science, archaeology, nutritional science, agricultural chemistry, chemical synthesis, metallurgy, chemical engineering and materials science.

↑ Return to Menu

Mass spectrometry in the context of Proteomics

Proteomics is the large-scale study of proteins. It is an interdisciplinary domain that has benefited greatly from the genetic information of various genome projects, including the Human Genome Project. It covers the exploration of proteomes from the overall level of protein composition, structure, and activity, and is an important component of functional genomics. The proteome is the entire set of proteins produced or modified by an organism or system.

Proteomics generally denotes the large-scale experimental analysis of proteins and proteomes, but often refers specifically to protein purification and mass spectrometry. Indeed, mass spectrometry is the most powerful method for analysis of proteomes, both in large samples composed of millions of cells, and in single cells.

↑ Return to Menu