Hydron (chemistry) in the context of "Protonation"

Play Trivia Questions online!

or

Skip to study material about Hydron (chemistry) in the context of "Protonation"

Ad spacer

⭐ Core Definition: Hydron (chemistry)

In chemistry, the hydron, informally called proton, is the cationic form of atomic hydrogen, represented with the symbol H. The general term "hydron", endorsed by IUPAC, encompasses cations of hydrogen regardless of isotope: thus it refers collectively to protons (H) for the protium isotope, deuterons (H or D) for the deuterium isotope, and tritons (H or T) for the tritium isotope.

Unlike most other ions, the hydron consists only of a bare atomic nucleus. The negatively charged counterpart of the hydron is the hydride anion, H
.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Hydron (chemistry) in the context of Protons

A proton is a stable subatomic particle, symbol p, H, or H with a positive electric charge of +1 e (elementary charge). Its mass is slightly less than the mass of a neutron and approximately 1836 times the mass of an electron (the proton-to-electron mass ratio). Protons and neutrons, each with a mass of approximately one dalton, are jointly referred to as nucleons (particles present in atomic nuclei).

One or more protons are present in the nucleus of every atom. They provide the attractive electrostatic central force which binds the atomic electrons. The number of protons in the nucleus is the defining property of an element, and is referred to as the atomic number (represented by the symbol Z). Since each element is identified by the number of protons in its nucleus, each element has its own atomic number, which determines the number of atomic electrons and consequently the chemical characteristics of the element.

↑ Return to Menu

Hydron (chemistry) in the context of Acid strength

Acid strength is the tendency of an acid, symbolised by the chemical formula HA, to dissociate into a proton, H, and an anion, A. The dissociation or ionization of a strong acid in solution is effectively complete, except in its most concentrated solutions.

Examples of strong acids are hydrochloric acid (HCl), perchloric acid (HClO4), nitric acid (HNO3) and sulfuric acid (H2SO4).

↑ Return to Menu

Hydron (chemistry) in the context of ATP synthase

ATP synthase is an enzyme that catalyzes the formation of the energy storage molecule adenosine triphosphate (ATP) using adenosine diphosphate (ADP) and inorganic phosphate (Pi). ATP synthase is a molecular machine. The overall reaction catalyzed by ATP synthase is:

  • ADP + Pi + 2Hout ⇌ ATP + H2O + 2Hin

ATP synthase lies across a cellular membrane and forms an aperture that protons can cross from areas of high concentration to areas of low concentration, imparting energy for the synthesis of ATP. This electrochemical gradient is generated by the electron transport chain and allows cells to store energy in ATP for later use. In prokaryotic cells ATP synthase lies across the plasma membrane, while in eukaryotic cells it lies across the inner mitochondrial membrane. Organisms capable of photosynthesis also have ATP synthase across the thylakoid membrane, which in plants is located in the chloroplast and in cyanobacteria is located in the cytoplasm.

↑ Return to Menu

Hydron (chemistry) in the context of Base (chemistry)

In chemistry, there are three definitions in common use of the word "base": Arrhenius bases, Brønsted bases, and Lewis bases. All definitions agree that bases are substances that react with acids, as originally proposed by G.-F. Rouelle in the mid-18th century.

In 1884, Svante Arrhenius proposed that a base is a substance which dissociates in aqueous solution to form hydroxide ions OH. These ions can react with hydrogen ions (H according to Arrhenius) from the dissociation of acids to form water in an acid–base reaction. A base was therefore a metal hydroxide such as NaOH or Ca(OH)2. Such aqueous hydroxide solutions were also described by certain characteristic properties. They are slippery to the touch, can taste bitter and change the color of pH indicators (e.g., turn red litmus paper blue).

↑ Return to Menu

Hydron (chemistry) in the context of Self-ionization of water

The self-ionization of water (also autoionization of water, autoprotolysis of water, autodissociation of water, or simply dissociation of water) is an ionization reaction in pure water or in an aqueous solution, in which a water molecule, H2O, deprotonates (loses the nucleus of one of its hydrogen atoms) to become a hydroxide ion, OH. The hydrogen nucleus, H, immediately protonates another water molecule to form a hydronium cation, H3O. It is an example of autoprotolysis, and exemplifies the amphoteric nature of water.

↑ Return to Menu

Hydron (chemistry) in the context of Deprotonation

Deprotonation (or dehydronation) is the removal (transfer) of a proton (or hydron, or hydrogen cation), (H) from a Brønsted–Lowry acid in an acid–base reaction. The species formed is the conjugate base of that acid. The complementary process, when a proton is added (transferred) to a Brønsted–Lowry base, is protonation (or hydronation). The species formed is the conjugate acid of that base.

A species that can either accept or donate a proton is referred to as amphiprotic. An example is the H2O (water) molecule, which can gain a proton to form the hydronium ion, H3O, or lose a proton, leaving the hydroxide ion, OH.

↑ Return to Menu

Hydron (chemistry) in the context of Conjugate acid

A conjugate acid, within the Brønsted–Lowry acid–base theory, is a chemical compound formed when an acid gives a proton (H) to a base—in other words, it is a base with a hydrogen ion added to it, as it loses a hydrogen ion in the reverse reaction. On the other hand, a conjugate base is what remains after an acid has donated a proton during a chemical reaction. Hence, a conjugate base is a substance formed by the removal of a proton from an acid, as it can gain a hydrogen ion in the reverse reaction. Because some acids can give multiple protons, the conjugate base of an acid may itself be acidic.

In summary, this can be represented as the following chemical reaction:

↑ Return to Menu