Gas chromatography in the context of "Chemical ecology"

Play Trivia Questions online!

or

Skip to study material about Gas chromatography in the context of "Chemical ecology"

Ad spacer

⭐ Core Definition: Gas chromatography

Gas chromatography (GC) is a common type of chromatography used in analytical chemistry for separating and analyzing compounds that can be vaporized without decomposition. Typical uses of GC include testing the purity of a particular substance or separating the different components of a mixture. In preparative chromatography, GC can be used to prepare pure compounds from a mixture.

Gas chromatography is also sometimes known as vapor-phase chromatography (VPC), or gas–liquid partition chromatography (GLPC). These alternative names, as well as their respective abbreviations, are frequently used in scientific literature.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Gas chromatography in the context of Chemical ecology

Chemical ecology is a vast and interdisciplinary field utilizing biochemistry, biology, ecology, and organic chemistry for explaining observed interactions of living things and their environment through chemical compounds (e.g. ecosystem resilience and biodiversity). Early examples of the field trace back to experiments with the same plant genus in different environments, interaction of plants and butterflies, and the behavioral effect of catnip. Chemical ecologists seek to identify the specific molecules (i.e. semiochemicals) that function as signals mediating community or ecosystem processes and to understand the evolution of these signals. The chemicals behind such roles are typically small, readily-diffusible organic molecules that act over various distances that are dependent on the environment (i.e. terrestrial or aquatic) but can also include larger molecules and small peptides.

In practice, chemical ecology relies on chromatographic techniques, such as thin-layer chromatography, high performance liquid chromatography, gas chromatography, mass spectrometry (MS), and absolute configuration utilizing nuclear magnetic resonance (NMR) to isolate and identify bioactive metabolites. To identify molecules with the sought-after activity, chemical ecologists often make use of bioassay-guided fractionation. Today, chemical ecologists also incorporate genetic and genomic techniques to understand the biosynthetic and signal transduction pathways underlying chemically mediated interactions.

↓ Explore More Topics
In this Dossier

Gas chromatography in the context of Diatomaceous earth

Diatomaceous earth (/ˌd.ətəˈmʃəs/ DY-ə-tə-MAY-shəs), also known as diatomite (/dˈætəmt/ dy-AT-ə-myte), celite, or kieselguhr, is a naturally occurring, soft, siliceous sedimentary rock that can be crumbled into a fine white to off-white powder. It has a particle size ranging from more than 3 mm to less than 1 μm, but typically 10 to 200 μm. Depending on the granularity, this powder can have an abrasive feel, similar to pumice powder, and has a low density as a result of its high porosity. The typical chemical composition of oven-dried diatomaceous earth is 80–90% silica, with 2–4% alumina (attributed mostly to clay minerals), and 0.5–2% iron oxide.

Diatomaceous earth consists of the fossilized remains of diatoms, a type of hard-shelled microalgae, that have accumulated over millions of years. It is used as a filtration aid, mild abrasive in products including metal polishes and toothpaste, mechanical insecticide, absorbent for liquids, matting agent for coatings, reinforcing filler in plastics and rubber, anti-block in plastic films, porous support for chemical catalysts, cat litter, activator in coagulation studies, a stabilizing component of dynamite, a thermal insulator, and a soil for potted plants and trees as in the art of bonsai. It is also used in gas chromatography packed columns made with glass or metal as stationary phase.

↑ Return to Menu

Gas chromatography in the context of Analytical chemistry

Analytical chemistry (or chemical analysis) is the branch of chemistry concerned with the development and application of methods to identify the chemical composition of materials and quantify the amounts of components in mixtures. It focuses on methods to identify unknown compounds, possibly in a mixture or solution, and quantify a compound's presence in terms of amount of substance (in any phase), concentration (in aqueous or solution phase), percentage by mass or number of moles in a mixture of compounds (or partial pressure in the case of gas phase).

It encompasses both classical techniques (e.g. titration, gravimetric analysis) and modern instrumental approaches (e.g. spectroscopy, chromatography, mass spectrometry, electrochemical methods). Modern analytical chemistry is deeply intertwined with data analysis and chemometrics, and is increasingly shaped by trends such as automation, miniaturization, and real-time sensing, with applications across fields as diverse as biochemistry, medicinal chemistry, forensic science, archaeology, nutritional science, agricultural chemistry, chemical synthesis, metallurgy, chemical engineering and materials science.

↑ Return to Menu