Biomedical engineering in the context of "Clinical chemistry"

Play Trivia Questions online!

or

Skip to study material about Biomedical engineering in the context of "Clinical chemistry"

Ad spacer

⭐ Core Definition: Biomedical engineering

Biomedical engineering (BME) or medical engineering is the application of engineering principles and design concepts to medicine and biology for healthcare applications (e.g., diagnostic or therapeutic purposes). BME also integrates the logical sciences to advance health care treatment, including diagnosis, monitoring, and therapy. Also included under the scope of a biomedical engineer is the management of current medical equipment in hospitals while adhering to relevant industry standards. This involves procurement, routine testing, preventive maintenance, and making equipment recommendations, a role also known as a Biomedical Equipment Technician (BMET) or as a clinical engineer.

Biomedical engineering has recently emerged as its own field of, as compared to many other engineering fields. Such an evolution is common as a new field transitions from being an interdisciplinary specialization among already-established fields to being considered a field in itself. Much of the work in biomedical engineering consists of research and development, spanning a broad array of subfields (see below). Prominent biomedical engineering applications include the development of biocompatible prostheses, various diagnostic and therapeutic medical devices ranging from clinical equipment to micro-implants, imaging technologies such as MRI and EKG/ECG, regenerative tissue growth, and the development of pharmaceutical drugs including biopharmaceuticals.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Biomedical engineering in the context of Biomedical sciences

Biomedical sciences are a set of sciences applying portions of natural science or formal science, or both, to develop knowledge, interventions, or technology that are of use in healthcare or public health. Such disciplines as medical microbiology, clinical virology, clinical epidemiology, genetic epidemiology, and biomedical engineering are medical sciences. In explaining physiological mechanisms operating in pathological processes, however, pathophysiology can be regarded as basic science.

Biomedical Sciences, as defined by the UK Quality Assurance Agency for Higher Education Benchmark Statement in 2015, includes those science disciplines whose primary focus is the biology of human health and disease and ranges from the generic study of biomedical sciences and human biology to more specialised subject areas such as pharmacology, human physiology and human nutrition. It is underpinned by relevant basic sciences including anatomy and physiology, cell biology, biochemistry, microbiology, genetics and molecular biology, pharmacology, immunology, mathematics and statistics, and bioinformatics. As such the biomedical sciences have a much wider range of academic and research activities and economic significance than that defined by hospital laboratory sciences. Biomedical Sciences are the major focus of bioscience research and funding in the 21st century.

↑ Return to Menu

Biomedical engineering in the context of Digital signal processing

Digital signal processing (DSP) is the use of digital processing, such as by computers or more specialized digital signal processors, to perform a wide variety of signal processing operations. The digital signals processed in this manner are a sequence of numbers that represent samples of a continuous variable in a domain such as time, space, or frequency. In digital electronics, a digital signal is represented as a pulse train, which is typically generated by the switching of a transistor.

Digital signal processing and analog signal processing are subfields of signal processing. DSP applications include audio and speech processing, sonar, radar and other sensor array processing, spectral density estimation, statistical signal processing, digital image processing, data compression, video coding, audio coding, image compression, signal processing for telecommunications, control systems, biomedical engineering, and seismology, among others.

↑ Return to Menu

Biomedical engineering in the context of Biopolymer

Biopolymers are natural polymers produced by the cells of living organisms. Like other polymers, biopolymers consist of monomeric units that are covalently bonded in chains to form larger molecules. There are three main classes of biopolymers, classified according to the monomers used and the structure of the biopolymer formed: polynucleotides, polypeptides, and polysaccharides. The polynucleotides, RNA and DNA, are long polymers of nucleotides. Polypeptides include proteins and shorter polymers of amino acids; some major examples include collagen, actin, and fibrin. Polysaccharides are linear or branched chains of sugar carbohydrates; examples include starch, cellulose, and alginate. Other examples of biopolymers include natural rubbers (polymers of isoprene), suberin and lignin (complex polyphenolic polymers), cutin and cutan (complex polymers of long-chain fatty acids), melanin, and polyhydroxyalkanoates (PHAs).

In addition to their many essential roles in living organisms, biopolymers have applications in many fields including the food industry, manufacturing, packaging, and biomedical engineering.

↑ Return to Menu

Biomedical engineering in the context of Fields of engineering

Engineering is the discipline and profession that applies scientific theories, mathematical methods, and empirical evidence to design, create, and analyze technological solutions, balancing technical requirements with concerns or constraints on safety, human factors, physical limits, regulations, practicality, and cost, and often at an industrial scale. In the contemporary era, engineering is generally considered to consist of the major primary branches of biomedical engineering, chemical engineering, civil engineering, electrical engineering, materials engineering and mechanical engineering. There are numerous other engineering sub-disciplines and interdisciplinary subjects that may or may not be grouped with these major engineering branches.

↑ Return to Menu

Biomedical engineering in the context of Fluid mechanics

Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them.Originally applied to water (hydromechanics), it found applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical, and biomedical engineering, as well as geophysics, oceanography, meteorology, astrophysics, and biology.

It can be divided into fluid statics, the study of various fluids at rest; and fluid dynamics, the study of the effect of forces on fluid motion.It is a branch of continuum mechanics, a subject which models matter without using the information that it is made out of atoms; that is, it models matter from a macroscopic viewpoint rather than from microscopic.

↑ Return to Menu

Biomedical engineering in the context of Chemical engineer

A chemical engineer is a professional equipped with the knowledge of chemistry and other basic sciences who works principally in the chemical industry to convert basic raw materials into a variety of products and deals with the design and operation of plants and equipment. This person applies the principles of chemical engineering in any of its various practical applications, such as

  1. Design, manufacture, and operation of plants and machinery in industrial chemical and related processes ("chemical process engineers");
  2. Development of new or adapted substances for products ranging from foods and beverages, to cosmetics, to cleaners, to pharmaceutical ingredients, among many other products ("chemical product engineers");
  3. Development of new technologies such as fuel cells, hydrogen power, and nanotechnology, as well as working in fields wholly or partially derived from chemical engineering such as materials science, polymer engineering, and biomedical engineering. This can also include geophysical projects such as rivers, stones, and signs.
↑ Return to Menu

Biomedical engineering in the context of Solid mechanics

Solid mechanics (also known as mechanics of solids) is the branch of continuum mechanics that studies the behavior of solid materials, especially their motion and deformation under the action of forces, temperature changes, phase changes, and other external or internal agents.

Solid mechanics is fundamental for civil, aerospace, nuclear, biomedical and mechanical engineering, for geology, and for many branches of physics and chemistry such as materials science. It has specific applications in many other areas, such as understanding the anatomy of living beings, and the design of dental prostheses and surgical implants. One of the most common practical applications of solid mechanics is the Euler–Bernoulli beam equation. Solid mechanics extensively uses tensors to describe stresses, strains, and the relationship between them.

↑ Return to Menu