Continuum mechanics in the context of "Solid mechanics"

Play Trivia Questions online!

or

Skip to study material about Continuum mechanics in the context of "Solid mechanics"

Ad spacer

⭐ Core Definition: Continuum mechanics

Continuum mechanics is a branch of mechanics that deals with the deformation of and transmission of forces through materials modeled as a continuous medium (also called a continuum) rather than as discrete particles.

Continuum mechanics deals with deformable bodies, as opposed to rigid bodies. A continuum model assumes that the substance of the object completely fills the space it occupies. While ignoring the fact that matter is made of atoms, this provides a sufficiently accurate description of matter on length scales much greater than that of inter-atomic distances. The concept of a continuous medium allows for intuitive analysis of bulk matter by using differential equations that describe the behavior of such matter according to physical laws, such as mass conservation, momentum conservation, and energy conservation. Information about the specific material is expressed in constitutive relationships.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Continuum mechanics in the context of Flow velocity

In continuum mechanics the flow velocity in fluid dynamics, also macroscopic velocity in statistical mechanics, or drift velocity in electromagnetism, is a vector field used to mathematically describe the motion of a continuum. The length of the flow velocity vector is scalar, the flow speed.It is also called velocity field; when evaluated along a line, it is called a velocity profile (as in, e.g., law of the wall).

↑ Return to Menu

Continuum mechanics in the context of Classical mechanics

In physics, classical mechanics is a theory that describes the effect of forces on the motion of macroscopic objects and bulk matter, without considering quantum effects, and often without incorporating relativistic effects either.

It is used in describing the motion of objects such as projectiles, parts of machinery, spacecraft, planets, stars, galaxies, deformable solids, fluids, macromolecules and other objects. The development of classical mechanics involved substantial change in the methods and philosophy of physics. The qualifier classical distinguishes this type of mechanics from new methods developed after the revolutions in physics of the early 20th century which revealed limitations in classical mechanics. Some modern sources include relativistic mechanics in classical mechanics, as representing the subject matter in its most developed and accurate form.

↑ Return to Menu

Continuum mechanics in the context of Vorticity

In continuum mechanics, vorticity is a pseudovector (or axial vector) field that describes the local spinning motion of a continuum near some point (the tendency of something to rotate), as would be seen by an observer located at that point and traveling along with the flow. It is an important quantity in the dynamical theory of fluids and provides a convenient framework for understanding a variety of complex flow phenomena, such as the generation of lift on wings.

Mathematically, the vorticity is the curl of the flow velocity :

↑ Return to Menu

Continuum mechanics in the context of Mathematical science

The Mathematical Sciences are a group of areas of study that includes, in addition to mathematics, those academic disciplines that are primarily mathematical in nature but may not be universally considered subfields of mathematics proper.

Statistics, for example, is mathematical in its methods but grew out of bureaucratic and scientific observations, which merged with inverse probability and then grew through applications in some areas of physics, biometrics, and the social sciences to become its own separate, though closely allied, field. Theoretical astronomy, theoretical physics, theoretical and applied mechanics, continuum mechanics, mathematical chemistry, actuarial science, computer science, computational science, data science, operations research, quantitative biology, control theory, econometrics, geophysics and mathematical geosciences are likewise other fields often considered part of the mathematical sciences.

↑ Return to Menu

Continuum mechanics in the context of Fluid mechanics

Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them.Originally applied to water (hydromechanics), it found applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical, and biomedical engineering, as well as geophysics, oceanography, meteorology, astrophysics, and biology.

It can be divided into fluid statics, the study of various fluids at rest; and fluid dynamics, the study of the effect of forces on fluid motion.It is a branch of continuum mechanics, a subject which models matter without using the information that it is made out of atoms; that is, it models matter from a macroscopic viewpoint rather than from microscopic.

↑ Return to Menu

Continuum mechanics in the context of Incompressible flow

In fluid mechanics, or more generally continuum mechanics, incompressible flow is a flow in which the material density does not vary over time. Equivalently, the divergence of an incompressible flow velocity is zero. Under certain conditions, the flow of compressible fluids can be modelled as incompressible flow to a good approximation.

↑ Return to Menu

Continuum mechanics in the context of Rigid body

In physics, a rigid body, also known as a rigid object, is a solid body in which deformation is zero or negligible, when a deforming pressure or deforming force is applied on it. The distance between any two given points on a rigid body remains constant in time regardless of external forces or moments exerted on it. A rigid body is usually considered as a continuous distribution of mass. Mechanics of rigid bodies is a field within mechanics where motions and forces of objects are studied without considering effects that can cause deformation (as opposed to mechanics of materials, where deformable objects are considered).

In the study of special relativity, a perfectly rigid body does not exist; and objects can only be assumed to be rigid if they are not moving near the speed of light, where the mass is infinitely large. In quantum mechanics, a rigid body is usually thought of as a collection of point masses. For instance, molecules (consisting of the point masses: electrons and nuclei) are often seen as rigid bodies (see classification of molecules as rigid rotors).

↑ Return to Menu

Continuum mechanics in the context of Stress (mechanics)

In continuum mechanics, stress is a physical quantity that describes forces present during deformation. For example, an object being pulled apart, such as a stretched elastic band, is subject to tensile stress and may undergo elongation. An object being pushed together, such as a crumpled sponge, is subject to compressive stress and may undergo shortening. The greater the force and the smaller the cross-sectional area of the body on which it acts, the greater the stress. Stress has dimension of force per area, with SI units of newtons per square meter (N/m) or pascal (Pa).

Stress expresses the internal forces that neighbouring particles of a continuous material exert on each other, while strain is the measure of the relative deformation of the material. For example, when a solid vertical bar is supporting an overhead weight, each particle in the bar pushes on the particles immediately below it. When a liquid is in a closed container under pressure, each particle gets pushed against by all the surrounding particles. The container walls and the pressure-inducing surface (such as a piston) push against them in (Newtonian) reaction. These macroscopic forces are actually the net result of a very large number of intermolecular forces and collisions between the particles in those molecules. Stress is frequently represented by a lowercase Greek letter sigma (σ).

↑ Return to Menu

Continuum mechanics in the context of Elongation (materials science)

A deformation can occur because of external loads, intrinsic activity (e.g. muscle contraction), body forces (such as gravity or electromagnetic forces), or changes in temperature, moisture content, or chemical reactions, etc.

↑ Return to Menu