Chromaticity in the context of CEA-861


Chromaticity in the context of CEA-861

Chromaticity Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Chromaticity in the context of "CEA-861"


⭐ Core Definition: Chromaticity

Chromaticity is an objective specification of the quality of a color regardless of its luminance. Chromaticity consists of two independent parameters, often specified as hue (h) and colorfulness (s), where the latter is alternatively called saturation, chroma, intensity, or excitation purity. This number of parameters follows from trichromacy of vision of most humans, which is assumed by most models in color science.

↓ Menu
HINT:

👉 Chromaticity in the context of CEA-861

Extended Display Identification Data (EDID) and Enhanced EDID (E-EDID) are metadata formats for display devices to describe their capabilities to a video source (e.g., graphics card or set-top box). The data format is defined by a standard published by the Video Electronics Standards Association (VESA).

The EDID data structure includes manufacturer name and serial number, product type, phosphor or filter type (as chromaticity data), timings supported by the display, display size, luminance data and (for digital displays only) pixel mapping data.

↓ Explore More Topics
In this Dossier

Chromaticity in the context of Spectroradiometer

A spectroradiometer is a light measurement tool that is able to measure both the wavelength and amplitude of the light emitted from a light source. Spectrometers discriminate the wavelength based on the position the light hits at the detector array allowing the full spectrum to be obtained with a single acquisition. Most spectrometers have a base measurement of counts which is the un-calibrated reading and is thus impacted by the sensitivity of the detector to each wavelength. By applying a calibration, the spectrometer is then able to provide measurements of spectral irradiance, spectral radiance and/or spectral flux. This data is also then used with built in or PC software and numerous algorithms to provide readings or Irradiance (W/cm2), Illuminance (lux or fc), Radiance (W/sr), Luminance (cd), Flux (Lumens or Watts), Chromaticity, Color Temperature, Peak and Dominant Wavelength. Some more complex spectrometer software packages also allow calculation of PAR μmol/m/s, Metamerism, and candela calculations based on distance and include features like 2- and 20-degree observer, baseline overlay comparisons, transmission and reflectance.

Spectrometers are available in numerous packages and sizes covering many wavelength ranges. The effective wavelength (spectral) range of a spectrometer is determined not only by the grating dispersion ability but also depends on the detectors' sensitivity range. Limited by the semiconductor's band gap the silicon-based detector responds to 200-1100 nm while the InGaAs based detector is sensitive to 900-1700 nm (or out to 2500 nm with cooling).

View the full Wikipedia page for Spectroradiometer
↑ Return to Menu

Chromaticity in the context of International Commission on Illumination

The International Commission on Illumination (abbreviated CIE for its French name Commission internationale de l'éclairage, but historically abbreviated ICI in English) is the international authority on light, illumination, colour, and colour spaces. It was established in 1913 as a successor to the Commission Internationale de Photométrie, which was founded in 1900, and is today based in Vienna, Austria.

View the full Wikipedia page for International Commission on Illumination
↑ Return to Menu

Chromaticity in the context of Gamut

The term has various meanings it goes by. In color reproduction and colorimetry, a gamut, or color gamut /ˈɡæmət/, is a convex set containing the colors that can be accurately represented, i.e. reproduced by an output device (e.g. printer or display) or measured by an input device (e.g. camera or visual system). Devices with a larger gamut can represent more colors. Similarly, gamut may also refer to the colors within a defined color space, which is not linked to a specific device. A trichromatic gamut is often visualized as a color triangle. A less common usage defines gamut as the subset of colors contained within an image, scene or video.

View the full Wikipedia page for Gamut
↑ Return to Menu

Chromaticity in the context of White point

A white point (often referred to as reference white or target white in technical documents) is a set of tristimulus values or chromaticity coordinates that serve to define the color "white" in image capture, encoding, or reproduction. Depending on the application, different definitions of white are needed to give acceptable results. For example, photographs taken indoors may be lit by incandescent lights, which are relatively orange compared to daylight. Defining "white" as daylight will give unacceptable results when attempting to color-correct a photograph taken with incandescent lighting.

View the full Wikipedia page for White point
↑ Return to Menu

Chromaticity in the context of CIELUV

In colorimetry, the CIE 1976 L*, u*, v* color space, commonly known by its abbreviation CIELUV, is a color space adopted by the International Commission on Illumination (CIE) in 1976, as a simple-to-compute transformation of the 1931 CIE XYZ color space, which attempted perceptual uniformity. It is extensively used for applications such as computer graphics which deal with colored lights. Although additive mixtures of different colored lights will fall on a line in CIELUV's uniform chromaticity diagram (called the CIE 1976 UCS), such additive mixtures will not, contrary to popular belief, fall along a line in the CIELUV color space unless the mixtures are constant in lightness.

View the full Wikipedia page for CIELUV
↑ Return to Menu

Chromaticity in the context of Color triangle

A color triangle is an arrangement of colors within a triangle, based on the additive or subtractive combination of three primary colors at its corners.

An additive color space defined by three primary colors has a chromaticity gamut that is a color triangle, when the amounts of the primaries are constrained to be nonnegative.

View the full Wikipedia page for Color triangle
↑ Return to Menu

Chromaticity in the context of Helmholtz–Kohlrausch effect

The Helmholtz–Kohlrausch effect (named after Hermann von Helmholtz and V. A. Kohlrausch) is a perceptual phenomenon wherein the intense saturation of spectral hue is perceived as part of the color's luminance. This brightness increase by saturation, which grows stronger as saturation increases, might better be called chromatic luminance, since "white" or achromatic luminance is the standard of comparison. It appears in both self-luminous and surface colors, although it is most pronounced in spectral (monochromatic) colors.

View the full Wikipedia page for Helmholtz–Kohlrausch effect
↑ Return to Menu

Chromaticity in the context of Color solid

A color solid is the three-dimensional representation of a color space or model and can be thought as an analog of, for example, the one-dimensional color wheel, which depicts the variable of hue (similarity with red, yellow, green, blue, etc.); or the 2D chromaticity diagram (or the color triangle), which depicts the variables of hue and spectral purity. The added spatial dimension allows a color solid to depict the three dimensions of color: lightness (gradations of light and dark, tints or shades), hue, and colorfulness, allowing the solid to depict all conceivable colors in an organized three-dimensional structure.

View the full Wikipedia page for Color solid
↑ Return to Menu

Chromaticity in the context of Commission Internationale de l'Éclairage

The International Commission on Illumination (abbreviated CIE for its French name, Commission internationale de l'éclairage, but historically abbreviated ICI in English) is the international authority on light, illumination, colour, and colour spaces. It was established in 1913 as a successor to the Commission Internationale de Photométrie, which was founded in 1900, and is today based in Vienna, Austria.

View the full Wikipedia page for Commission Internationale de l'Éclairage
↑ Return to Menu

Chromaticity in the context of Cryptochrome

Cryptochromes (from the Greek κρυπτός χρώμα, "hidden colour") are a class of flavoproteins found in plants and animals that are sensitive to blue light. They are involved in the circadian rhythms and the sensing of magnetic fields in a number of species. The name cryptochrome was proposed as a portmanteau combining the chromatic nature of the photoreceptor, and the cryptogamic organisms on which many blue-light studies were carried out.

The genes CRY1 and CRY2 encode the proteins CRY1 and CRY2, respectively. Cryptochromes are classified into plant Cry and animal Cry. Animal Cry can be further categorized into insect type (Type I) and mammal-like (Type II). CRY1 is a circadian photoreceptor whereas CRY2 is a clock repressor which represses Clock/Cycle (Bmal1) complex in insects and vertebrates. In plants, blue-light photoreception can be used to cue developmental signals. Besides chlorophylls, cryptochromes are the only proteins known to form photoinduced radical-pairs in vivo. These appear to enable some animals to detect magnetic fields.

View the full Wikipedia page for Cryptochrome
↑ Return to Menu