Pixel in the context of CEA-861


Pixel in the context of CEA-861

Pixel Study page number 1 of 4

Play TriviaQuestions Online!

or

Skip to study material about Pixel in the context of "CEA-861"


⭐ Core Definition: Pixel

In digital imaging, a pixel (abbreviated px), pel, or picture element is the smallest addressable element in a raster image, or the smallest addressable element in a dot matrix display device. In most digital display devices, pixels are the smallest element that can be manipulated through software.

Each pixel is a sample of an original image; more samples typically provide more accurate representations of the original. The intensity of each pixel is variable. In color imaging systems, a color is typically represented by three or four component intensities such as red, green, and blue, or cyan, magenta, yellow, and black.

↓ Menu
HINT:

In this Dossier

Pixel in the context of Photography

Photography is the art, application, and practice of creating images by recording light, either electronically by means of an image sensor, or chemically by means of a light-sensitive material such as photographic film. It is employed in many fields of science, manufacturing (e.g., photolithography), and business, as well as its more direct uses for art, film and video production, recreational purposes, hobby, and mass communication. A person who operates a camera to capture or take photographs is called a photographer, while the captured image, also known as a photograph, is the result produced by the camera.

Typically, a lens is used to focus the light reflected or emitted from objects into a real image on the light-sensitive surface inside a camera during a timed exposure. With an electronic image sensor, this produces an electrical charge at each pixel, which is electronically processed and stored in a digital image file for subsequent display or processing. The result with photographic emulsion is an invisible latent image, which is later chemically "developed" into a visible image, either negative or positive, depending on the purpose of the photographic material and the method of processing. A negative image on film is traditionally used to photographically create a positive image on a paper base, known as a print, either by using an enlarger or by contact printing.

View the full Wikipedia page for Photography
↑ Return to Menu

Pixel in the context of Square

In geometry, a square is a regular quadrilateral. It has four straight sides of equal length and four equal angles. Squares are special cases of rectangles, which have four equal angles, and of rhombuses, which have four equal sides. As with all rectangles, a square's angles are right angles (90 degrees, or π/2 radians), making adjacent sides perpendicular. The area of a square is the side length multiplied by itself, and so in algebra, multiplying a number by itself is called squaring.

Equal squares can tile the plane edge-to-edge in the square tiling. Square tilings are ubiquitous in tiled floors and walls, graph paper, image pixels, and game boards. Square shapes are also often seen in building floor plans, origami paper, food servings, in graphic design and heraldry, and in instant photos and fine art.

View the full Wikipedia page for Square
↑ Return to Menu

Pixel in the context of Display resolution

The display resolution or display modes of a digital television, computer monitor, or other display device is the number of distinct pixels in each dimension that can be displayed. It can be an ambiguous term especially as the displayed resolution is controlled by different factors in cathode-ray tube (CRT) displays, flat-panel displays (including liquid-crystal displays) and projection displays using fixed picture-element (pixel) arrays.

It is usually quoted as width × height, with the units in pixels: for example, 1024 × 768 means the width is 1024 pixels and the height is 768 pixels. This example would normally be spoken as "ten twenty-four by seven sixty-eight" or "ten twenty-four by seven six eight".

View the full Wikipedia page for Display resolution
↑ Return to Menu

Pixel in the context of Raster graphics

In computer graphics and digital photography, a raster graphic, raster image, or simply raster is a digital image made up of a rectangular grid of tiny colored (usually square) so-called pixels. Unlike vector graphics which use mathematical formulas to describe shapes and lines, raster images store the exact color of each pixel, making them ideal for photographs and images with complex colors and details. Raster images are characterized by their dimensions (width and height in pixels) and color depth (the number of bits per pixel). They can be displayed on computer displays, printed on paper, or viewed on other media, and are stored in various image file formats.

The printing and prepress industries know raster graphics as contones (from "continuous tones"). In contrast, line art is usually implemented as vector graphics in digital systems.

View the full Wikipedia page for Raster graphics
↑ Return to Menu

Pixel in the context of Digital image

A digital image is an image composed of picture elements, also known as pixels, each with finite, discrete quantities of numeric representation for its intensity or gray level that is an output from its two-dimensional functions fed as input by its spatial coordinates denoted with x, y on the x-axis and y-axis, respectively. An image can be vector or raster type. By itself, the term "digital image" usually refers to raster images or bitmapped images (as opposed to vector images).

View the full Wikipedia page for Digital image
↑ Return to Menu

Pixel in the context of PNG

Portable Network Graphics (PNG, officially pronounced /pɪŋ/ PING, colloquially pronounced /ˌpɛnˈ/ PEE-en-JEE) is a raster-graphics file format that supports lossless data compression. PNG was developed as an improved, non-patented replacement for Graphics Interchange Format (GIF).

PNG supports palette-based images (with palettes of 24-bit RGB or 32-bit RGBA colors), grayscale images (with or without an alpha channel for transparency), and full-color non-palette-based RGB or RGBA images. The PNG working group designed the format for transferring images on the Internet, not for professional-quality print graphics; therefore, non-RGB color spaces such as CMYK are not supported. A PNG file contains a single image in an extensible structure of chunks, encoding the basic pixels and other information such as textual comments and integrity checks documented in RFC 2083.

View the full Wikipedia page for PNG
↑ Return to Menu

Pixel in the context of Liquid-crystal display

A liquid-crystal display (LCD) is a flat-panel display or other electronically modulated optical device that uses the light-modulating properties of liquid crystals combined with polarizers to display information. Liquid crystals do not emit light directly but instead use a backlight or reflector to produce images in color or monochrome.

LCDs are available to display arbitrary images (as in a general-purpose computer display) or fixed images with low information content, which can be displayed or hidden: preset words, digits, and seven-segment displays (as in a digital clock) are all examples of devices with these displays. They use the same basic technology, except that arbitrary images are made from a matrix of small pixels, while other displays have larger elements.

View the full Wikipedia page for Liquid-crystal display
↑ Return to Menu

Pixel in the context of LED displays

An LED display is a flat panel display that uses an array of light-emitting diodes (LEDs) as pixels for a video display. Their brightness allows them to be used outdoors where they are visible in the sun for store signs and billboards. In recent years, they have also become commonly used in destination signs on public transport vehicles, as well as variable-message signs on highways. LED displays are capable of providing general illumination in addition to visual display, as when used for stage lighting or other decorative (as opposed to informational) purposes. LED displays can offer higher contrast ratios than a projector and are thus an alternative to traditional projection screens, and they can be used for large, uninterrupted (without a visible grid arising from the bezels of individual displays) video walls. microLED displays are LED displays with smaller LEDs, which poses significant development challenges.

Their use in cinemas to replace projectors and projection screens has been explored.

View the full Wikipedia page for LED displays
↑ Return to Menu

Pixel in the context of Display size

On 2D displays, such as computer monitors and TVs, display size or viewable image size (VIS) refers to the physical size of the area where pictures and videos are displayed. The size of a screen is usually described by the length of its diagonal, which is the distance between opposite corners, typically measured in inches. It is also sometimes called the physical image size to distinguish it from the "logical image size," which describes a screen's display resolution and is measured in pixels.

View the full Wikipedia page for Display size
↑ Return to Menu

Pixel in the context of Vector display

A vector monitor, vector display, or calligraphic display is a display device used for computer graphics up through the 1970s. It is a type of CRT, similar to that of an early oscilloscope. In a vector display, the image is composed of drawn lines rather than a grid of glowing pixels as in raster graphics. The electron beam follows an arbitrary path, tracing the connected sloped lines rather than following the same horizontal raster path for all images. The beam skips over dark areas of the image without visiting their points.

Some refresh vector displays use a normal phosphor that fades rapidly and needs constant refreshing 30-40 times per second to show a stable image. These displays, such as the Imlac PDS-1, require some local refresh memory to hold the vector endpoint data. Other storage tube displays, such as the popular Tektronix 4010, use a special phosphor that continues glowing for many minutes. Storage displays do not require any local memory. In the 1970s, both types of vector displays were much more affordable than bitmap raster graphics displays when megapixel computer memory was still very expensive. Today, raster displays have replaced nearly all uses of vector displays.

View the full Wikipedia page for Vector display
↑ Return to Menu

Pixel in the context of AMOLED

AMOLED (active-matrix organic light-emitting diode; /ˈæmˌlɛd/) is a type of OLED display device technology. OLED describes a specific type of thin-film-display technology in which organic compounds form the electroluminescent material, and active matrix refers to the technology behind the addressing of pixels.

Since 2007, AMOLED displays have been used in mobile phones, media players, TVs, and digital cameras. The current progress for this technology is towards lower power usage, lower cost, and higher screen resolutions (e.g., 8K).

View the full Wikipedia page for AMOLED
↑ Return to Menu

Pixel in the context of Cinematography

Cinematography (from Ancient Greek κίνημα (kínēma) 'movement' and γράφειν (gráphein) 'to write, draw, paint, etc.') is the art of motion picture (and more recently, electronic video camera) photography.

Cinematographers use a lens to focus reflected light from objects into a real image that is transferred to some image sensor or light-sensitive material inside the movie camera. These exposures are created sequentially and preserved for later processing and viewing as a motion picture. Capturing images with an electronic image sensor produces an electrical charge for each pixel in the image, which is electronically processed and stored in a video file for subsequent processing or display. Images captured with photographic emulsion result in a series of invisible latent images on the film stock, which are chemically "developed" into a visible image. The images on the film stock are projected for viewing in the same motion picture.

View the full Wikipedia page for Cinematography
↑ Return to Menu

Pixel in the context of Grayscale

In digital photography, computer-generated imagery, and colorimetry, a grayscale (American English) or greyscale (Commonwealth English) image is one in which the value of each pixel holds no color information and only expresses a shade of gray. Pixel values are typically stored in the range 0 to 255 (black to white).

Grayscale images, are black-and-white or gray monochrome, and composed exclusively of shades of gray. The contrast ranges from black at the weakest intensity to white at the strongest. Grayscale images are distinct from one-bit bi-tonal black-and-white images, which, in the context of computer imaging, are images with only two colors: black and white (also called bilevel or binary images). Grayscale images have many shades of gray in between.

View the full Wikipedia page for Grayscale
↑ Return to Menu

Pixel in the context of Color depth

Color depth, also known as bit depth, is either the number of bits used to indicate the color of a single pixel, or the number of bits used for each color component of a single pixel. When referring to a pixel, the concept can be defined as bits per pixel (bpp). When referring to a color component, the concept can be defined as bits per component, bits per channel, bits per color (all three abbreviated bpc), and also bits per pixel component, bits per color channel or bits per sample. Modern standards tend to use bits per component, but historical lower-depth systems used bits per pixel more often.

Color depth is only one aspect of color representation, expressing the precision with which the amount of each primary can be expressed; the other aspect is how broad a range of colors can be expressed (the gamut). The definition of both color precision and gamut is accomplished with a color encoding specification which assigns a digital code value to a location in a color space.

View the full Wikipedia page for Color depth
↑ Return to Menu