Color space in the context of CIELUV


Color space in the context of CIELUV

Color space Study page number 1 of 3

Play TriviaQuestions Online!

or

Skip to study material about Color space in the context of "CIELUV"


⭐ Core Definition: Color space

A color space is a specific organization of colors. In combination with color profiling supported by various physical devices, it supports reproducible representations of color – whether such representation entails an analog or a digital representation. A color space may be arbitrary, i.e. with physically realized colors assigned to a set of physical color swatches with corresponding assigned color names (including discrete numbers in – for example – the Pantone collection), or structured with mathematical rigor (as with the NCS System, Adobe RGB and sRGB). A "color space" is a useful conceptual tool for understanding the color capabilities of a particular device or digital file. When trying to reproduce color on another device, color spaces can show whether shadow/highlight detail and color saturation can be retained, and by how much either will be compromised.

A "color model" is an abstract mathematical model describing the way colors can be represented as tuples of numbers (e.g. triples in RGB or quadruples in CMYK); however, a color model with no associated mapping function to an absolute color space is a more or less arbitrary color system with no connection to any globally understood system of color interpretation. Adding a specific mapping function between a color model and a reference color space establishes within the reference color space a definite "footprint", known as a gamut, and for a given color model, this defines a color space. For example, Adobe RGB and sRGB are two different absolute color spaces, both based on the RGB color model. When defining a color space, the usual reference standard is the CIELAB or CIEXYZ color spaces, which were specifically designed to encompass all colors the average human can see.

↓ Menu
HINT:

In this Dossier

Color space in the context of Color

Color (or colour in Commonwealth English) is the visual perception produced by the activation of the different types of cone cells in the eye caused by light. Though color is not an inherent property of matter, color perception is related to an object's light absorption, emission, reflection and transmission. For most humans, visible wavelengths of light are the ones perceived in the visible light spectrum, with three types of cone cells (trichromacy). Other animals may have a different number of cone cell types or have eyes sensitive to different wavelengths, such as bees that can distinguish ultraviolet, and thus have a different color sensitivity range. Animal perception of color originates from different light wavelength or spectral sensitivity in cone cell types, which is then processed by the brain.

Colors have perceived properties such as hue, colorfulness, and lightness. Colors can also be additively mixed (mixing light) or subtractively mixed (mixing pigments). If one color is mixed in the right proportions, because of metamerism, they may look the same as another stimulus with a different reflection or emission spectrum. For convenience, colors can be organized in a color space, which when being abstracted as a mathematical color model can assign each region of color with a corresponding set of numbers. As such, color spaces are an essential tool for color reproduction in print, photography, computer monitors, and television. Some of the most well-known color models and color spaces are RGB, CMYK, HSL/HSV, CIE Lab, and YCbCr/YUV.

View the full Wikipedia page for Color
↑ Return to Menu

Color space in the context of Hue

In color theory, hue is one of the properties (called color appearance parameters) of a color, defined in the CIECAM02 model as "the degree to which a stimulus can be described as similar to or different from stimuli that are described as red, orange, yellow, green, blue, violet," within certain theories of color vision.

Hue can typically be represented quantitatively by a single number, often corresponding to an angular position around a central or neutral point or axis on a color space coordinate diagram (such as a chromaticity diagram) or color wheel, or by its dominant wavelength or by that of its complementary color. The other color appearance parameters are colorfulness, saturation (also known as intensity or chroma), lightness, and brightness. Usually, colors with the same hue are distinguished with adjectives referring to their lightness or colorfulness - for example: "light blue", "pastel blue", "vivid blue", and "cobalt blue". Exceptions include brown, which is a dark orange.

View the full Wikipedia page for Hue
↑ Return to Menu

Color space in the context of Color model

In color science, a color model is an abstract mathematical model describing the way colors can be represented as tuples of numbers, typically as three or four values or color components. It differs from a color space in that a color model is not absolute, that is, there is no way to map a color within a color model to a point in a color space.

This article describes ways in which human color vision can be modeled, and discusses some of the models in common use.

View the full Wikipedia page for Color model
↑ Return to Menu

Color space in the context of CIE Lab

The CIELAB color space, also referred to as L*a*b*, is a color space defined by the International Commission on Illumination (abbreviated CIE) in 1976. It expresses color as three values: L* for perceptual lightness and a* and b* for the four unique colors of human vision: red, green, blue and yellow. CIELAB was intended as a perceptually uniform space, where a given numerical change corresponds to a similar perceived change in color. While the LAB space is not truly perceptually uniform, it nevertheless is useful in industry for detecting small differences in color.

View the full Wikipedia page for CIE Lab
↑ Return to Menu

Color space in the context of YCbCr

YCbCr, Y′CbCr, also written as YCBCR or Y′CBCR, is a family of color spaces used as a part of the color image pipeline in digital video and photography systems. Like YPBPR, it is based on RGB primaries; the two are generally equivalent, but YCBCR is intended for digital video, while YPBPR is designed for use in analog systems.

Y′ is the luma component, and CB and CR are the blue-difference and red-difference chroma components. Luma Y′ (with prime) is distinguished from luminance Y, meaning that light intensity is nonlinearly encoded based on gamma corrected RGB primaries.

View the full Wikipedia page for YCbCr
↑ Return to Menu

Color space in the context of PNG

Portable Network Graphics (PNG, officially pronounced /pɪŋ/ PING, colloquially pronounced /ˌpɛnˈ/ PEE-en-JEE) is a raster-graphics file format that supports lossless data compression. PNG was developed as an improved, non-patented replacement for Graphics Interchange Format (GIF).

PNG supports palette-based images (with palettes of 24-bit RGB or 32-bit RGBA colors), grayscale images (with or without an alpha channel for transparency), and full-color non-palette-based RGB or RGBA images. The PNG working group designed the format for transferring images on the Internet, not for professional-quality print graphics; therefore, non-RGB color spaces such as CMYK are not supported. A PNG file contains a single image in an extensible structure of chunks, encoding the basic pixels and other information such as textual comments and integrity checks documented in RFC 2083.

View the full Wikipedia page for PNG
↑ Return to Menu

Color space in the context of 4K UHD

Ultra-high-definition television (also known as Ultra HD television, Ultra HD, UHDTV, UHD and Super Hi-Vision) today includes 4K UHD and 8K UHD, which are two digital video formats with an aspect ratio of 16:9. These were first proposed by NHK Science & Technology Research Laboratories and later defined and approved by the International Telecommunication Union (ITU).

The Consumer Electronics Association announced on October 17, 2012, that "Ultra High Definition", or "Ultra HD", would be used for displays that have an aspect ratio of 16:9 or wider and at least one digital input capable of carrying and presenting native video at a minimum resolution of 3840 × 2160. In 2015, the Ultra HD Forum was created to bring together the end-to-end video production ecosystem to ensure interoperability and produce industry guidelines so that adoption of ultra-high-definition television could accelerate. From just 30 in Q3 2015, the forum published a list up to 55 commercial services available around the world offering 4K resolution.

View the full Wikipedia page for 4K UHD
↑ Return to Menu

Color space in the context of Color calibration

The aim of color calibration is to measure and/or adjust the color response of a device (input or output) to a known state. In International Color Consortium (ICC) terms, this is the basis for an additional color characterization of the device and later profiling. In non-ICC workflows, calibration sometimes refers to establishing a known relationship to a standard color space in one go. The device that is to be calibrated is sometimes known as a calibration source; the color space that serves as a standard is sometimes known as a calibration target. Color calibration is a requirement for all devices taking an active part in a color-managed workflow and is used by many industries, such as television production, gaming, photography, engineering, chemistry, medicine, and more.

View the full Wikipedia page for Color calibration
↑ Return to Menu

Color space in the context of Tetrachromat

Tetrachromacy (from Ancient Greek tetra, meaning "four" and chroma, meaning "color") is the condition of possessing four independent channels for conveying color information, or possessing four types of cone cell in the eye. Organisms with tetrachromacy are called tetrachromats.

In tetrachromatic organisms, the sensory color space is four-dimensional, meaning that matching the sensory effect of arbitrarily chosen spectra of light within their visible spectrum requires mixtures of at least four primary colors.

View the full Wikipedia page for Tetrachromat
↑ Return to Menu

Color space in the context of International Commission on Illumination

The International Commission on Illumination (abbreviated CIE for its French name Commission internationale de l'éclairage, but historically abbreviated ICI in English) is the international authority on light, illumination, colour, and colour spaces. It was established in 1913 as a successor to the Commission Internationale de Photométrie, which was founded in 1900, and is today based in Vienna, Austria.

View the full Wikipedia page for International Commission on Illumination
↑ Return to Menu

Color space in the context of Munsell color system

The Munsell color system is a color space that specifies colors based on three properties of color: hue (basic color), value (lightness), and chroma (color intensity). It was created by Albert H. Munsell in the first decade of the 20th century and adopted by the United States Department of Agriculture (USDA) as the official color system for soil research in the 1930s.

Several earlier color order systems in the field of colorimetry had placed colors into a three-dimensional color solid of one form or another, but Munsell was the first to separate hue, value, and chroma into perceptually uniform and independent dimensions, and he was the first to illustrate the colors systematically in three-dimensional space. Munsell's system, particularly the later renotations, is based on rigorous measurements of human subjects' visual responses to color, putting it on a firm experimental scientific basis. Because of this basis in human visual perception, Munsell's system has outlasted its contemporary color models, and though it has been superseded for some uses by models such as CIELAB (L*a*b*) and CIECAM02, it is still in wide use today.

View the full Wikipedia page for Munsell color system
↑ Return to Menu

Color space in the context of Palette (computing)

In computer graphics, a palette is the set of available colors from which an image can be made. In some systems, the palette is fixed by the hardware design, and in others it is dynamic, typically implemented via a color lookup table (CLUT), a correspondence table in which selected colors from a certain color space's color reproduction range are assigned an index, by which they can be referenced. By referencing the colors via an index, which takes less information than needed to describe the actual colors in the color space, this technique aims to reduce data usage, including processing, transfer bandwidth, RAM usage, and storage. Images in which colors are indicated by references to a CLUT are called indexed color images.

View the full Wikipedia page for Palette (computing)
↑ Return to Menu

Color space in the context of Color name

A color term (or color name) is a word or phrase that refers to a specific color. The color term may refer to human perception of that color (which is affected by visual context) which is usually defined according to the Munsell color system, or to an underlying physical property (such as a specific wavelength on the spectrum of visible light). There are also numerical systems of color specification, referred to as color spaces.

An important distinction must be established between color and shape, as these two attributes usually are used in conjunction with one another when describing in language. For example, they are labeled as alternative parts of speech terms color term and shape term.

View the full Wikipedia page for Color name
↑ Return to Menu

Color space in the context of Adobe RGB color space

The Adobe RGB (1998) color space or opRGB is a color space developed by Adobe Inc. in 1998. It was designed to encompass most of the colors achievable on CMYK color printers, but by using RGB primary colors on a device such as a computer display. The Adobe RGB (1998) color space encompasses roughly 30% of the visible colors specified by the CIELAB color space – improving upon the gamut of the sRGB color space, primarily in cyan-green hues. It was subsequently standardized by the IEC as IEC 61966-2-5:1999 with a name opRGB (optional RGB color space) and is used in HDMI.

View the full Wikipedia page for Adobe RGB color space
↑ Return to Menu

Color space in the context of SRGB

sRGB (standard RGB) is a color space, for use on monitors, printers, and the World Wide Web. It was initially proposed by HP and Microsoft in 1996 and became an official standard of the International Electrotechnical Commission (IEC) as IEC 61966-2-1:1999. It is the current standard colorspace for the web, and it is usually the assumed colorspace for images that do not have an embedded color profile.

The sRGB standard uses the same color primaries and white point as the ITU-R BT.709 standard for HDTV, but a different transfer function (or gamma) compatible with the era's CRT displays, and assumes a viewing environment closer to typical home and office viewing conditions. Matching the behavior of PC video cards and CRT displays greatly aided sRGB's popularity.

View the full Wikipedia page for SRGB
↑ Return to Menu

Color space in the context of Gamut

The term has various meanings it goes by. In color reproduction and colorimetry, a gamut, or color gamut /ˈɡæmət/, is a convex set containing the colors that can be accurately represented, i.e. reproduced by an output device (e.g. printer or display) or measured by an input device (e.g. camera or visual system). Devices with a larger gamut can represent more colors. Similarly, gamut may also refer to the colors within a defined color space, which is not linked to a specific device. A trichromatic gamut is often visualized as a color triangle. A less common usage defines gamut as the subset of colors contained within an image, scene or video.

View the full Wikipedia page for Gamut
↑ Return to Menu

Color space in the context of Perceptually uniform

In color science, color difference or color distance is the separation between two colors. This metric allows quantified examination of a notion that formerly could only be described with adjectives. Quantification of these properties is of great importance to those whose work is color-critical. Common definitions make use of the Euclidean distance in a device-independent color space.

View the full Wikipedia page for Perceptually uniform
↑ Return to Menu