Archean in the context of Neohadean


Archean in the context of Neohadean

Archean Study page number 1 of 4

Play TriviaQuestions Online!

or

Skip to study material about Archean in the context of "Neohadean"


⭐ Core Definition: Archean

The Archean (IPA: /ɑːrˈkən/ ar-KEE-ən, also spelled Archaean or Archæan), in older sources sometimes called the Archaeozoic, is the second of the four geologic eons of Earth's history, preceded by the Hadean Eon and followed by the Proterozoic and the Phanerozoic. The Archean represents the time period from 4,031 to 2,500 Ma (million years ago). The Late Heavy Bombardment is hypothesized to overlap with the beginning of the Archean. The oldest known glaciation occurred in the middle of the eon.

The Earth during the Archean was mostly a water world: there was continental crust, but much of it was under an ocean deeper than today's oceans. Except for some rare relict crystals (Hadean zircon), today's oldest continental crust dates back to the Archean. Much of the geological detail of the Archean has been destroyed by subsequent tectonic activity. The Earth's atmosphere was also vastly different in composition from today's: the prebiotic atmosphere was a reducing atmosphere rich in methane and lacking free oxygen.

↓ Menu
HINT:

In this Dossier

Archean in the context of Marine life

Marine life, sea life or ocean life is the collective ecological communities that encompass all aquatic animals, plants, algae, fungi, protists, single-celled microorganisms and associated viruses living in the saline water of marine habitats, either the sea water of marginal seas and oceans, or the brackish water of coastal wetlands, lagoons, estuaries and inland seas. As of 2023, more than 242,000 marine species have been documented, and perhaps two million marine species are yet to be documented. An average of 2,332 new species per year are being described. Marine life is studied scientifically in both marine biology and in biological oceanography.

By volume, oceans provide about 90% of the living space on Earth, and served as the cradle of life and vital biotic sanctuaries throughout Earth's geological history. The earliest known life forms evolved as anaerobic prokaryotes (archaea and bacteria) in the Archean oceans around the deep sea hydrothermal vents, before photoautotrophs appeared and allowed the microbial mats to expand into shallow water marine environments. The Great Oxygenation Event of the early Proterozoic significantly altered the marine chemistry, which likely caused a widespread anaerobe extinction event but also led to the evolution of eukaryotes through symbiogenesis between surviving anaerobes and aerobes. Complex life eventually arose out of marine eukaryotes during the Neoproterozoic, and which culminated in a large evolutionary radiation event of mostly sessile macrofaunae known as the Avalon Explosion. This was followed in the early Phanerozoic by a more prominent radiation event known as the Cambrian Explosion, where actively moving eumetazoan became prevalent. These marine life also expanded into fresh waters, where fungi and green algae that were washed ashore onto riparian areas started to take hold later during the Ordovician before rapidly expanding inland during the Silurian and Devonian, paving the way for terrestrial ecosystems to develop.

View the full Wikipedia page for Marine life
↑ Return to Menu

Archean in the context of Great Oxygenation Event

The Great Oxidation Event (GOE) or Great Oxygenation Event, also called the Oxygen Catastrophe, Oxygen Revolution, Oxygen Crisis, or Oxygen Holocaust, was a time interval during the Earth's Paleoproterozoic era when the Earth's atmosphere and shallow seas first experienced a rise in the concentration of free oxygen. This began approximately 2.460–2.426 billion years ago (Ga) during the Siderian period and ended approximately 2.060 Ga ago during the Rhyacian. Geological, isotopic and chemical evidence suggests that biologically produced molecular oxygen (dioxygen or O2) started to accumulate in the Archean prebiotic atmosphere due to microbial photosynthesis, and eventually changed it from a weakly reducing atmosphere practically devoid of oxygen into an oxidizing one containing abundant free oxygen, with oxygen levels being as high as 10% of modern atmospheric level by the end of the GOE.

View the full Wikipedia page for Great Oxygenation Event
↑ Return to Menu

Archean in the context of Proterozoic

The Proterozoic (IPA: /ˌprtərəˈzɪk, ˌprɒt-, -ər-, -trə-, -tr-/ PROH-tər-ə-ZOH-ik, PROT-, -⁠ər-oh-, -⁠trə-, -⁠troh-) is the third of the four geologic eons of Earth's history, spanning the time interval from 2500 to 538.8 Ma, and is the longest eon of Earth's geologic time scale. It is preceded by the Archean and followed by the Phanerozoic, and is the most recent part of the Precambrian "supereon".

The Proterozoic is subdivided into three geologic eras (from oldest to youngest): the Paleoproterozoic, Mesoproterozoic and Neoproterozoic. It covers the time from the appearance of free oxygen in Earth's atmosphere to just before the proliferation of complex life on the Earth during the Cambrian Explosion. The name Proterozoic combines two words of Greek origin: protero- meaning "former, earlier", and -zoic, meaning "of life".

View the full Wikipedia page for Proterozoic
↑ Return to Menu

Archean in the context of Phanerozoic

The Phanerozoic is the current and the latest of the four geologic eons in the Earth's geologic time scale, covering the time period from 542 million years ago to the present. It is the eon during which abundant animal and plant life has proliferated, diversified and colonized various niches on the Earth's surface, beginning with the Cambrian period when animals first developed hard shells that can be clearly preserved in the fossil record. The time before the Phanerozoic, collectively called the Precambrian, is now divided into the Hadean, Archaean and Proterozoic eons.

The time span of the Phanerozoic starts with the sudden appearance of fossilised evidence of a number of animal phyla; the evolution of those phyla into diverse forms; the evolution of plants; the evolution of fish, arthropods and molluscs; the terrestrial colonization and evolution of insects, chelicerates, myriapods and tetrapods; and the development of modern flora dominated by vascular plants. During this time span, tectonic forces which move the continents had collected them into a single landmass known as Pangaea (the most recent supercontinent), which then separated into the current continental landmasses.

View the full Wikipedia page for Phanerozoic
↑ Return to Menu

Archean in the context of Stratovolcano

A stratovolcano, also known as a composite volcano, is a typically conical volcano built up by many alternating layers (strata) of hardened lava and tephra. Unlike shield volcanoes, stratovolcanoes are characterized by a steep profile with a summit crater and explosive eruptions. Some have collapsed summit craters called calderas. The lava flowing from stratovolcanoes typically cools and solidifies before spreading far, due to high viscosity. The magma forming this lava is often felsic, having high to intermediate levels of silica (as in rhyolite, dacite, or andesite), with lesser amounts of less viscous mafic magma. Extensive felsic lava flows are uncommon, but can travel as far as 8 kilometres (5 miles).

The term composite volcano is used because strata are usually mixed and uneven instead of neat layers. They are among the most common types of volcanoes; more than 700 stratovolcanoes have erupted lava during the Holocene Epoch (the last 11,700 years), and many older, now extinct, stratovolcanoes erupted lava as far back as Archean times. Stratovolcanoes are typically found in subduction zones but they also occur in other geological settings. Two examples of stratovolcanoes famous for catastrophic eruptions are Krakatoa in Indonesia (which erupted in 1883 claiming 36,000 lives) and Mount Vesuvius in Italy (which erupted in 79 A.D killing an estimated 2,000 people). In modern times, Mount St. Helens (1980) in Washington State, US, and Mount Pinatubo (1991) in the Philippines have erupted catastrophically, but with fewer deaths.

View the full Wikipedia page for Stratovolcano
↑ Return to Menu

Archean in the context of Cyanobacteria

Cyanobacteria (/sˌænbækˈtɪəriə/ sy-AN-oh-bak-TEER-ee-ə) are a group of autotrophic gram-negative bacteria of the phylum Cyanobacteriota that can obtain biological energy via oxygenic photosynthesis. The name "cyanobacteria" (from Ancient Greek κύανος (kúanos) 'blue') refers to their bluish green (cyan) color, which forms the basis of cyanobacteria's informal common name, blue-green algae.

Cyanobacteria are probably the most numerous taxon to have ever existed on Earth and the first organisms known to have produced oxygen, having appeared in the middle Archean eon and apparently originated in a freshwater or terrestrial environment. Their photopigments can absorb the red- and blue-spectrum frequencies of sunlight (thus reflecting a greenish color) to split water molecules into hydrogen ions and oxygen. The hydrogen ions are used to react with carbon dioxide to produce complex organic compounds such as carbohydrates (a process known as carbon fixation), and the oxygen is released as a byproduct. By continuously producing and releasing oxygen over billions of years, cyanobacteria are thought to have converted the early Earth's anoxic, weakly reducing prebiotic atmosphere, into an oxidizing one with free gaseous oxygen (which previously would have been immediately removed by various surface reductants), resulting in the Great Oxidation Event and the "rusting of the Earth" during the early Proterozoic, dramatically changing the composition of life forms on Earth. The subsequent adaptation of early single-celled organisms to survive in oxygenous environments likely led to endosymbiosis between anaerobes and aerobes, and hence the evolution of eukaryotes during the Paleoproterozoic.

View the full Wikipedia page for Cyanobacteria
↑ Return to Menu

Archean in the context of Thrust fault

A thrust fault is a break in the Earth's crust, across which older rocks are pushed above younger rocks.

View the full Wikipedia page for Thrust fault
↑ Return to Menu

Archean in the context of Isua Greenstone Belt

The Isua Greenstone Belt is an Archean greenstone belt in southwestern Greenland, aged between 3.7 and 3.8 billion years. The belt contains variably metamorphosed mafic volcanic and sedimentary rocks, and is the largest exposure of Eoarchaean supracrustal rocks on Earth. Due to its age and low metamorphic grade relative to many Eoarchaean rocks, the Isua Greenstone Belt has become a focus for investigations on the emergence of life and the style of tectonics that operated on the early Earth.

View the full Wikipedia page for Isua Greenstone Belt
↑ Return to Menu

Archean in the context of Pilbara craton

The Pilbara Craton is an old and stable part of the continental lithosphere located in the Pilbara region of Western Australia.

The Pilbara Craton is one of only two pristine Archaean 3.8–2.7 Ga (billion years ago) crusts identified on the Earth, along with the Kaapvaal Craton in South Africa. The youngest rocks are 1.7 Ga old in the historic area assigned to the Craton. Both locations may have once been part of the Vaalbara supercontinent or the continent of Ur.

View the full Wikipedia page for Pilbara craton
↑ Return to Menu

Archean in the context of Craton

A craton ( /ˈkrtɒn/ KRAYT-on, /ˈkrætɒn/ KRAT-on, or /ˈkrtən/ KRAY-tən; from Ancient Greek: κράτος kratos "strength") is an old and stable part of continental lithosphere (the Earth's two topmost layers, the crust and the lithospheric mantle). Having often survived cycles of merging and rifting of continents, cratons are generally found in the interiors of tectonic plates; the exceptions occur where geologically recent rifting events have separated cratons and created passive margins along their edges. Cratons are composed of ancient crystalline basement rocks covered by younger sedimentary rocks. They have a thick crust and deep lithospheric roots extending several hundred kilometres into Earth's mantle.

Cratons contain the oldest continental crust rocks on Earth. They were formed in the Archaean (4 to 2.5 billion years ago) and the Proterozoic (2.5 billion- 538.8 million year ago) geologic eons. Most were formed in the Archaean.

View the full Wikipedia page for Craton
↑ Return to Menu

Archean in the context of Hadean Eon

The Hadean (/hˈdən, ˈhdiən/ hay-DEE-ən, HAY-dee-ən) is the first and oldest of the four geologic eons of Earth's history, starting with the planet's formation about 4.6 Ga (estimated 4567.30 ± 0.16 Ma set by the age of the oldest solid material in the Solar Systemprotoplanetary disk dust particles—found as chondrules and calcium–aluminium-rich inclusions in some meteorites about 4.567 Ga), and ending 4.031 Ga, the age of the oldest known intact rock formations on Earth as recognized by the International Commission on Stratigraphy. The interplanetary collision that created the Moon occurred early in this eon. The Hadean eon was succeeded by the Archean eon, with the Late Heavy Bombardment hypothesized to have occurred at the Hadean-Archean boundary.

Hadean rocks are very rare, largely consisting of granular zircons from one locality (Jack Hills) in Western Australia. Hadean geophysical models remain controversial among geologists: plate tectonics and the growth of cratons into continents may have started in the Hadean, but there is still uncertainty.

View the full Wikipedia page for Hadean Eon
↑ Return to Menu

Archean in the context of Hadean zircon

Hadean zircon is the oldest-surviving crustal material from the Earth's earliest geological time period, the Hadean eon, about 4 billion years ago. Zircon is a mineral that is commonly used for radiometric dating because it is highly resistant to chemical changes and appears in the form of small crystals or grains in most igneous and metamorphic host rocks.

Hadean zircon has very low abundance around the globe because of recycling of material by plate tectonics. When the rock at the surface is buried deep in the Earth it is heated and can recrystallise or melt. In the Jack Hills, Australia, scientists obtained a relatively comprehensive record of Hadean zircon crystals in contrast to other locations. The Jack Hills zircons are found in metamorphosed sediments that were initially deposited around 3 billion years ago, or during the Archean Eon. However, the zircon crystals there are older than the rocks that contain them. Many investigations have been carried out to find the absolute age and properties of zircon, for example the isotope ratios, mineral inclusions, and geochemistry of zircon. The characteristics of Hadean zircons show early Earth history and the mechanism of Earth's processes in the past. Based on the properties of these zircon crystals, many different geological models were proposed.

View the full Wikipedia page for Hadean zircon
↑ Return to Menu

Archean in the context of Precambrian

The Precambrian ( /priˈkæmbri.ən, -ˈkm-/ pree-KAM-bree-ən, -⁠KAYM-; or pre-Cambrian, sometimes abbreviated pC, or Cryptozoic) is the earliest part of Earth's history, set before the current Phanerozoic Eon. The Precambrian is so named because it preceded the Cambrian, the first period of the Phanerozoic Eon, which is named after Cambria, the Latinized name for Wales, where rocks from this age were first studied. The Precambrian accounts for 88% of the Earth's geologic time.

The Precambrian is an informal unit of geologic time, subdivided into three eons (Hadean, Archean, Proterozoic) of the geologic time scale. It spans from the formation of Earth about 4.6 billion years ago (Ga) to the beginning of the Cambrian Period, about 538.8 million years ago (Ma), when hard-shelled creatures first appeared in abundance.

View the full Wikipedia page for Precambrian
↑ Return to Menu

Archean in the context of Paleoarchean

The Paleoarchean (/ˌpli.ɑːrˈkən, ˌpæl-/ PAY-lee-oh-ar-KEE-ən, PAL-), also spelled Palaeoarchaean (formerly known as the early Archean), is a geologic era within the Archean Eon. The name derives from Greek "Palaios" ancient. It spans the period of time 3,600 to 3,200 million years ago. The era is defined chronometrically and is not referenced to a specific level of a rock section on Earth. The earliest confirmed evidence of life comes from this era, and Vaalbara, one of Earth's earliest supercontinents, may have formed during this era.

View the full Wikipedia page for Paleoarchean
↑ Return to Menu

Archean in the context of Purple Earth hypothesis

The Purple Earth hypothesis (PEH) is an astrobiological hypothesis, first proposed by molecular biologist Shiladitya DasSarma in 2007, that the earliest photosynthetic life forms of Early Earth were based on the simpler molecule retinal rather than the more complex porphyrin-based chlorophyll, making the surface biosphere appear purplish rather than its current greenish color. It is estimated to have occurred between 3.5 and 2.4 billion years ago during the Archean eon, prior to the Great Oxygenation Event and Huronian glaciation.

Retinal-containing cell membranes exhibit a single light absorption peak centered in the energy-rich green-yellow region of the visible spectrum, but transmit and reflect red and blue light, resulting in a magenta color. Chlorophyll pigments, in contrast, absorb red and blue light, but little or no green light, which results in the characteristic green reflection of plants, cyanobacteria, green algae, and other organisms with chlorophyllic organelles. The simplicity of retinal pigments in comparison to the more complex chlorophyll, their association with isoprenoid lipids in the cell membrane, as well as the discovery of archaeal membrane components in ancient sediments on the Early Earth are consistent with an early appearance of life forms with purple membranes prior to the turquoise of the Canfield ocean and later green photosynthetic organisms.

View the full Wikipedia page for Purple Earth hypothesis
↑ Return to Menu