Oxygen in the context of "Great Oxygenation Event"
⭐ In the context of the Great Oxidation Event, oxygen is considered a byproduct of what fundamental biological process?
The increase in oxygen during the Great Oxidation Event was driven by early microbes utilizing photosynthesis, a process that releases oxygen as a waste product while converting light energy into chemical energy.
Ad spacer
>>>PUT SHARE BUTTONS HERE<<<
👉 Oxygen in the context of Great Oxygenation Event
The Great Oxidation Event (GOE) or Great Oxygenation Event, also called the Oxygen Catastrophe, Oxygen Revolution, Oxygen Crisis, or Oxygen Holocaust, was a time interval during the Earth's Paleoproterozoicera when the Earth's atmosphere and shallow seas first experienced a rise in the concentration of freeoxygen. This began approximately 2.460–2.426 billion years ago (Ga) during the Siderian period and ended approximately 2.060 Ga ago during the Rhyacian. Geological, isotopic and chemical evidence suggests that biologically produced molecular oxygen (dioxygen or O2) started to accumulate in the Archeanprebiotic atmosphere due to microbialphotosynthesis, and eventually changed it from a weakly reducing atmosphere practically devoid of oxygen into an oxidizing one containing abundant free oxygen, with oxygen levels being as high as 10% of modern atmospheric level by the end of the GOE.
Earth has a dynamic atmosphere, which sustains Earth's surface conditions and protects it from most meteoroids and UV-light at entry. It is composed primarily of nitrogen and oxygen. Water vapor is widely present in the atmosphere, forming clouds that cover most of the planet. The water vapor acts as a greenhouse gas and, together with other greenhouse gases in the atmosphere, particularly carbon dioxide (CO2), creates the conditions for both liquid surface water and water vapor to persist via the capturing of energy from the Sun's light. This process maintains the current average surface temperature of 14.76 °C (58.57 °F), at which water is liquid under normal atmospheric pressure. Differences in the amount of captured energy between geographic regions (as with the equatorial region receiving more sunlight than the polar regions) drive atmospheric and ocean currents, producing a global climate system with different climate regions, and a range of weather phenomena such as precipitation, allowing components such as carbon and nitrogen to cycle.
Clay is a type of fine-grained natural soil material containing clay minerals (hydrous aluminium phyllosilicates, e.g. kaolinite, Al2Si2O5(OH)4). Most pure clay minerals are white or light-coloured, but natural clays show a variety of colours from impurities, such as a reddish or brownish colour from small amounts of iron oxide.
Clays develop plasticity when wet but can be hardened through firing. Clay is the longest-known ceramic material. Prehistoric humans discovered the useful properties of clay and used it for making pottery. Some of the earliest pottery shards have been dated to around 14,000 BCE, and clay tablets were the first known writing medium. Clay is used in many modern industrial processes, such as paper making, cement production, and chemical filtering. Between one-half and two-thirds of the world's population live or work in buildings made with clay, often baked into brick, as an essential part of its load-bearing structure. In agriculture, clay content is a major factor in determining land arability. Clay soils are generally less suitable for crops due to poor natural drainage; however, clay soils are more fertile, due to higher cation-exchange capacity.
The atmosphere of Earth consists of a layer of mixed gas (commonly referred to as air) that is retained by gravity, surrounding the Earth's surface. It contains variable quantities of suspended aerosols and particulates that create weather features such as clouds and hazes. The atmosphere serves as a protective buffer between the Earth's surface and outer space. It shields the surface from most meteoroids and ultraviolet solar radiation, reduces diurnal temperature variation – the temperature extremes between day and night, and keeps it warm through heat retention via the greenhouse effect. The atmosphere redistributes heat and moisture among different regions via air currents, and provides the chemical and climate conditions that allow life to exist and evolve on Earth.
A molecule may be homonuclear, that is, it consists of atoms of one chemical element, e.g. two atoms in the oxygen molecule (O2); or it may be heteronuclear, a chemical compound composed of more than one element, e.g. water (two hydrogen atoms and one oxygen atom; H2O). In the kinetic theory of gases, the term molecule is often used for any gaseous particle regardless of its composition. This relaxes the requirement that a molecule contains two or more atoms, since the noble gases are individual atoms. Atoms and complexes connected by non-covalent interactions, such as hydrogen bonds or ionic bonds, are typically not considered single molecules.
Aquatic plants require special adaptations for prolonged inundation in water, and for floating at the water surface. The most common adaptation is the presence of lightweight internal packing cells, aerenchyma, but floating leaves and finely dissected leaves are also common. Aquatic plants only thrive in water or in soil that is frequently saturated, and are therefore a common component of swamps and marshlands.
An anaerobic organism or anaerobe is any organism that does not require molecular oxygen for its growth. It may react negatively or even die in the presence of free oxygen. Anaerobic organisms do not use oxygen as a terminal electron acceptor in their respiration process to produce energy, but a less powerful oxidizing agent, such as nitrate, ferric ion, Mn(IV), sulfate or bicarbonate anions. In contrast, an aerobic organism (aerobe) is an organism that requires a sufficiently oxygenated environment to respire, produce its energy, and thrive. Because the anaerobic energy production was the first mechanism to be used by living microorganisms in their evolution and is much less efficient than the aerobic pathway, anaerobes are practically, de facto, always unicellular organisms (e.g. bacteria and archaea (prokaryotes), or protozoans (eukaryotes). However, a minuscule multicellular organism, with an exceptionally rare metabolism and surviving in a hypersaline brine pool in the darkness of the bottom of the Mediterranean Sea, has been recently discovered. Meanwhile, it remains a scientific curiosity, as the much higher energy requirements of most multicellular organisms cannot be met by anaerobic respiration. Most fungi (eukaryotes) are obligate aerobes, requiring oxygen to survive and grow; however, some species, such as the Chytridiomycota that reside in the rumen of cattle, are obligate anaerobes; for these species, anaerobic respiration is used because oxygen would disrupt their metabolism or kill them. The deep seafloor and its underlying unconsolidatedsediments ranks among the largest potential habitats for anaerobic microorganisms on Earth. Moreover, chemoautotroph microbes also thrive around hydrothermal vents, discharging hot water on the oceanseabed near mid-ocean ridges, where anaerobic conditions prevail. These microbes produce energy in the absence of sunlight or oxygen through a process called anaerobic respiration, whereby inorganic compounds and ions such as protons (H), elemental sulfur and its derivatives (SO2−4, S2O2−3), or ferric ions, are reduced to drive oxidative phosphorylation.
The Archean (IPA: /ɑːrˈkiːən/ar-KEE-ən, also spelled Archaean or Archæan), in older sources sometimes called the Archaeozoic, is the second of the four geologic eons of Earth's history, preceded by the Hadean Eon and followed by the Proterozoic and the Phanerozoic. The Archean represents the time period from 4,031 to 2,500 Ma (million years ago). The Late Heavy Bombardment is hypothesized to overlap with the beginning of the Archean. The oldest known glaciation occurred in the middle of the eon.
The Earth during the Archean was mostly a water world: there was continental crust, but much of it was under an ocean deeper than today's oceans. Except for some rare relict crystals (Hadean zircon), today's oldest continental crust dates back to the Archean. Much of the geological detail of the Archean has been destroyed by subsequent tectonic activity. The Earth's atmosphere was also vastly different in composition from today's: the prebiotic atmosphere was a reducing atmosphere rich in methane and lacking free oxygen.