Prebiotic atmosphere in the context of "Archean"

⭐ In the context of the Archean Eon, the prebiotic atmosphere is considered to have been characterized by…

Ad spacer

⭐ Core Definition: Prebiotic atmosphere

The prebiotic atmosphere is the second atmosphere present on Earth before today's biotic, oxygen-rich third atmosphere, and after the first atmosphere (which was mainly water vapor and simple hydrides) of Earth's formation. The formation of the Earth, roughly 4.5 billion years ago, involved multiple collisions and coalescence of planetary embryos. This was followed by an over 100 million year period on Earth where a magma ocean was present, the atmosphere was mainly steam, and surface temperatures reached up to 8,000 K (14,000 °F). Earth's surface then cooled and the atmosphere stabilized, establishing the prebiotic atmosphere. The environmental conditions during this time period were quite different from today: the Sun was about 30% dimmer overall yet brighter at ultraviolet and x-ray wavelengths; there was a liquid ocean; it is unknown if there were continents but oceanic islands were likely; Earth's interior chemistry (and thus, volcanic activity) was different; there was a larger flux of impactors (e.g. comets and asteroids) hitting Earth's surface.

Studies have attempted to constrain the composition and nature of the prebiotic atmosphere by analyzing geochemical data and using theoretical models that include our knowledge of the early Earth environment. These studies indicate that the prebiotic atmosphere likely contained more CO2 than the modern Earth, had N2 within a factor of 2 of the modern levels, and had vanishingly low amounts of O2. The atmospheric chemistry is believed to have been "weakly reducing", where reduced gases like CH4, NH3, and H2 were present in small quantities. The composition of the prebiotic atmosphere was likely periodically altered by impactors, which may have temporarily caused the atmosphere to have been "strongly reduced".

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Prebiotic atmosphere in the context of Archean

The Archean (IPA: /ɑːrˈkən/ ar-KEE-ən, also spelled Archaean or Archæan), in older sources sometimes called the Archaeozoic, is the second of the four geologic eons of Earth's history, preceded by the Hadean Eon and followed by the Proterozoic and the Phanerozoic. The Archean represents the time period from 4,031 to 2,500 Ma (million years ago). The Late Heavy Bombardment is hypothesized to overlap with the beginning of the Archean. The oldest known glaciation occurred in the middle of the eon.

The Earth during the Archean was mostly a water world: there was continental crust, but much of it was under an ocean deeper than today's oceans. Except for some rare relict crystals (Hadean zircon), today's oldest continental crust dates back to the Archean. Much of the geological detail of the Archean has been destroyed by subsequent tectonic activity. The Earth's atmosphere was also vastly different in composition from today's: the prebiotic atmosphere was a reducing atmosphere rich in methane and lacking free oxygen.

↓ Explore More Topics
In this Dossier

Prebiotic atmosphere in the context of Great Oxygenation Event

The Great Oxidation Event (GOE) or Great Oxygenation Event, also called the Oxygen Catastrophe, Oxygen Revolution, Oxygen Crisis, or Oxygen Holocaust, was a time interval during the Earth's Paleoproterozoic era when the Earth's atmosphere and shallow seas first experienced a rise in the concentration of free oxygen. This began approximately 2.460–2.426 billion years ago (Ga) during the Siderian period and ended approximately 2.060 Ga ago during the Rhyacian. Geological, isotopic and chemical evidence suggests that biologically produced molecular oxygen (dioxygen or O2) started to accumulate in the Archean prebiotic atmosphere due to microbial photosynthesis, and eventually changed it from a weakly reducing atmosphere practically devoid of oxygen into an oxidizing one containing abundant free oxygen, with oxygen levels being as high as 10% of modern atmospheric level by the end of the GOE.

↑ Return to Menu

Prebiotic atmosphere in the context of Cyanobacteria

Cyanobacteria (/sˌænbækˈtɪəriə/ sy-AN-oh-bak-TEER-ee-ə) are a group of autotrophic gram-negative bacteria of the phylum Cyanobacteriota that can obtain biological energy via oxygenic photosynthesis. The name "cyanobacteria" (from Ancient Greek κύανος (kúanos) 'blue') refers to their bluish green (cyan) color, which forms the basis of cyanobacteria's informal common name, blue-green algae.

Cyanobacteria are probably the most numerous taxon to have ever existed on Earth and the first organisms known to have produced oxygen, having appeared in the middle Archean eon and apparently originated in a freshwater or terrestrial environment. Their photopigments can absorb the red- and blue-spectrum frequencies of sunlight (thus reflecting a greenish color) to split water molecules into hydrogen ions and oxygen. The hydrogen ions are used to react with carbon dioxide to produce complex organic compounds such as carbohydrates (a process known as carbon fixation), and the oxygen is released as a byproduct. By continuously producing and releasing oxygen over billions of years, cyanobacteria are thought to have converted the early Earth's anoxic, weakly reducing prebiotic atmosphere, into an oxidizing one with free gaseous oxygen (which previously would have been immediately removed by various surface reductants), resulting in the Great Oxidation Event and the "rusting of the Earth" during the early Proterozoic, dramatically changing the composition of life forms on Earth. The subsequent adaptation of early single-celled organisms to survive in oxygenous environments likely led to endosymbiosis between anaerobes and aerobes, and hence the evolution of eukaryotes during the Paleoproterozoic.

↑ Return to Menu

Prebiotic atmosphere in the context of Reducing atmosphere

A reducing atmosphere is an atmosphere in which oxidation is prevented by the absence of oxygen and other oxidizing gases or vapours, and which may contain actively reductant gases such as hydrogen, carbon monoxide, methane and hydrogen sulfide that would be readily oxidized to remove any free oxygen. Although Early Earth had a reducing prebiotic atmosphere prior to the Proterozoic eon, starting at about 2.5 billion years ago in the late Neoarchaean period, the Earth's atmosphere experienced a significant rise in oxygen and transitioned to an oxidizing atmosphere with a surplus of molecular oxygen (dioxygen, O2) as the primary oxidizing agent.

↑ Return to Menu

Prebiotic atmosphere in the context of Geological history of oxygen

Although oxygen is the most abundant element in Earth's crust, due to its high reactivity it mostly exists in compound (oxide) forms such as water, carbon dioxide, iron oxides and silicates. Before photosynthesis evolved, Earth's atmosphere had little free diatomic elemental oxygen (O2). Small quantities of oxygen were released by geological and biological processes, but did not build up in the reducing atmosphere due to reactions with then-abundant reducing gases such as atmospheric methane and hydrogen sulfide and surface reductants such as ferrous iron.

Oxygen began building up in the prebiotic atmosphere at approximately 2.45 Ga during the Neoarchean-Paleoproterozoic boundary, a paleogeological event known as the Great Oxygenation Event (GOE). The concentrations of O2 attained were less than 10% of today's and probably fluctuated greatly. Around 500Mya a second event known as the Neoproterozoic Oxygenation Event lead to oxygen levels similar or even higher than the present. The increase in oxygen concentrations had wide-ranging and significant impacts on Earth's geochemistry and biosphere. Detailed connections between oxygen and evolution remain elusive.

↑ Return to Menu