Marine microorganisms in the context of "Marine life"

⭐ In the context of marine life, the initial proliferation of prokaryotic microorganisms is most closely associated with which geological period and environmental feature?

Ad spacer

⭐ Core Definition: Marine microorganisms

Marine microorganisms are defined by their habitat as microorganisms living in a marine environment, that is, in the saltwater of a sea or ocean or the brackish water of a coastal estuary. A microorganism (or microbe) is any microscopic living organism or virus, which is invisibly small to the unaided human eye without magnification. Microorganisms are very diverse. They can be single-celled or multicellular and include bacteria, archaea, viruses, and most protozoa, as well as some fungi, algae, and animals, such as rotifers and copepods. Many macroscopic animals and plants have microscopic juvenile stages. Some microbiologists also classify viruses as microorganisms, but others consider these as non-living.

Marine microorganisms have been variously estimated to make up between 70 and 90 percent of the biomass in the ocean. Taken together they form the marine microbiome. Over billions of years this microbiome has evolved many life styles and adaptations and come to participate in the global cycling of almost all chemical elements. Microorganisms are crucial to nutrient recycling in ecosystems as they act as decomposers. They are also responsible for nearly all photosynthesis that occurs in the ocean, as well as the cycling of carbon, nitrogen, phosphorus and other nutrients and trace elements. Marine microorganisms sequester large amounts of carbon and produce much of the world's oxygen.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Marine microorganisms in the context of Marine life

Marine life, sea life or ocean life is the collective ecological communities that encompass all aquatic animals, plants, algae, fungi, protists, single-celled microorganisms and associated viruses living in the saline water of marine habitats, either the sea water of marginal seas and oceans, or the brackish water of coastal wetlands, lagoons, estuaries and inland seas. As of 2023, more than 242,000 marine species have been documented, and perhaps two million marine species are yet to be documented. An average of 2,332 new species per year are being described. Marine life is studied scientifically in both marine biology and in biological oceanography.

By volume, oceans provide about 90% of the living space on Earth, and served as the cradle of life and vital biotic sanctuaries throughout Earth's geological history. The earliest known life forms evolved as anaerobic prokaryotes (archaea and bacteria) in the Archean oceans around the deep sea hydrothermal vents, before photoautotrophs appeared and allowed the microbial mats to expand into shallow water marine environments. The Great Oxygenation Event of the early Proterozoic significantly altered the marine chemistry, which likely caused a widespread anaerobe extinction event but also led to the evolution of eukaryotes through symbiogenesis between surviving anaerobes and aerobes. Complex life eventually arose out of marine eukaryotes during the Neoproterozoic, and which culminated in a large evolutionary radiation event of mostly sessile macrofaunae known as the Avalon Explosion. This was followed in the early Phanerozoic by a more prominent radiation event known as the Cambrian Explosion, where actively moving eumetazoan became prevalent. These marine life also expanded into fresh waters, where fungi and green algae that were washed ashore onto riparian areas started to take hold later during the Ordovician before rapidly expanding inland during the Silurian and Devonian, paving the way for terrestrial ecosystems to develop.

↓ Explore More Topics
In this Dossier

Marine microorganisms in the context of Marine microbiome

All animals on Earth form associations with microorganisms, including protists, bacteria, archaea, fungi, and viruses. In the ocean, animal–microbial relationships were historically explored in single host–symbiont systems. However, new explorations into the diversity of marine microorganisms associating with diverse marine animal hosts is moving the field into studies that address interactions between the animal host and a more multi-member microbiome. The potential for microbiomes to influence the health, physiology, behavior, and ecology of marine animals could alter current understandings of how marine animals adapt to change, and especially the growing climate-related and anthropogenic-induced changes already impacting the ocean environment.

In the oceans, it is challenging to find eukaryotic organisms that do not live in close relationship with a microbial partner. Host-associated microbiomes also influence biogeochemical cycling within ecosystems with cascading effects on biodiversity and ecosystem processes. The microbiomes of diverse marine animals are currently under study, from simplistic organisms including sponges and ctenophores to more complex organisms such as sea squirts and sharks.

↑ Return to Menu

Marine microorganisms in the context of Marine primary production

Marine primary production is the chemical synthesis in the ocean of organic compounds from atmospheric or dissolved carbon dioxide. It principally occurs through the process of photosynthesis, which uses light as its source of energy, but it also occurs through chemosynthesis, which uses the oxidation or reduction of inorganic chemical compounds as its source of energy. Almost all life on Earth relies directly or indirectly on primary production. The organisms responsible for primary production are called primary producers or autotrophs.

Most marine primary production is generated by a diverse collection of marine microorganisms called algae and cyanobacteria. Together these form the principal primary producers at the base of the ocean food chain and produce half of the world's oxygen. Marine primary producers underpin almost all marine animal life by generating nearly all of the oxygen and food marine animals need to exist. Some marine primary producers are also ecosystem engineers which change the environment and provide habitats for other marine life.

↑ Return to Menu