Eon (geology) in the context of "Hadean Eon"

Play Trivia Questions online!

or

Skip to study material about Eon (geology) in the context of "Hadean Eon"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Eon (geology) in the context of Hadean Eon

The Hadean (/hˈdən, ˈhdiən/ hay-DEE-ən, HAY-dee-ən) is the first and oldest of the four geologic eons of Earth's history, starting with the planet's formation about 4.6 Ga (estimated 4567.30 ± 0.16 Ma set by the age of the oldest solid material in the Solar Systemprotoplanetary disk dust particles—found as chondrules and calcium–aluminium-rich inclusions in some meteorites about 4.567 Ga), and ending 4.031 Ga, the age of the oldest known intact rock formations on Earth as recognized by the International Commission on Stratigraphy. The interplanetary collision that created the Moon occurred early in this eon. The Hadean eon was succeeded by the Archean eon, with the Late Heavy Bombardment hypothesized to have occurred at the Hadean-Archean boundary.

Hadean rocks are very rare, largely consisting of granular zircons from one locality (Jack Hills) in Western Australia. Hadean geophysical models remain controversial among geologists: plate tectonics and the growth of cratons into continents may have started in the Hadean, but there is still uncertainty.

↓ Explore More Topics
In this Dossier

Eon (geology) in the context of Proterozoic

The Proterozoic (IPA: /ˌprtərəˈzɪk, ˌprɒt-, -ər-, -trə-, -tr-/ PROH-tər-ə-ZOH-ik, PROT-, -⁠ər-oh-, -⁠trə-, -⁠troh-) is the third of the four geologic eons of Earth's history, spanning the time interval from 2500 to 538.8 Ma, and is the longest eon of Earth's geologic time scale. It is preceded by the Archean and followed by the Phanerozoic, and is the most recent part of the Precambrian "supereon".

The Proterozoic is subdivided into three geologic eras (from oldest to youngest): the Paleoproterozoic, Mesoproterozoic and Neoproterozoic. It covers the time from the appearance of free oxygen in Earth's atmosphere to just before the proliferation of complex life on the Earth during the Cambrian Explosion. The name Proterozoic combines two words of Greek origin: protero- meaning "former, earlier", and -zoic, meaning "of life".

↑ Return to Menu

Eon (geology) in the context of Phanerozoic

The Phanerozoic is the current and the latest of the four geologic eons in the Earth's geologic time scale, covering the time period from 542 million years ago to the present. It is the eon during which abundant animal and plant life has proliferated, diversified and colonized various niches on the Earth's surface, beginning with the Cambrian period when animals first developed hard shells that can be clearly preserved in the fossil record. The time before the Phanerozoic, collectively called the Precambrian, is now divided into the Hadean, Archaean and Proterozoic eons.

The time span of the Phanerozoic starts with the sudden appearance of fossilised evidence of a number of animal phyla; the evolution of those phyla into diverse forms; the evolution of plants; the evolution of fish, arthropods and molluscs; the terrestrial colonization and evolution of insects, chelicerates, myriapods and tetrapods; and the development of modern flora dominated by vascular plants. During this time span, tectonic forces which move the continents had collected them into a single landmass known as Pangaea (the most recent supercontinent), which then separated into the current continental landmasses.

↑ Return to Menu

Eon (geology) in the context of Ordovician

The Ordovician (/ɔːrdəˈvɪʃi.ən, -d-, -ˈvɪʃən/ or-də-VISH-ee-ən, -⁠doh-, -⁠VISH-ən) is a geologic period and system, the second of six periods of the Paleozoic Era, and the second of twelve periods of the Phanerozoic Eon. The Ordovician spans 41.6 million years from the end of the Cambrian Period 486.85 Ma (million years ago) to the start of the Silurian Period 443.1 Ma.

The Ordovician, named after the Welsh tribe of the Ordovices, was defined by Charles Lapworth in 1879 to resolve a dispute between followers of Adam Sedgwick and Roderick Murchison, who were placing the same rock beds in North Wales in the Cambrian and Silurian systems, respectively. Lapworth recognized that the fossil fauna in the disputed strata were different from those of either the Cambrian or the Silurian systems, and placed them in a system of their own. The Ordovician received international approval in 1960 (forty years after Lapworth's death), when it was adopted as an official period of the Paleozoic Era by the International Geological Congress.

↑ Return to Menu

Eon (geology) in the context of Devonian

The Devonian (/dəˈvni.ən, dɛ-/ də-VOH-nee-ən, deh-) is a geologic period and system of the Paleozoic era during the Phanerozoic eon, spanning 60.3 million years from the end of the preceding Silurian period at 419.62 million years ago (Ma), to the beginning of the succeeding Carboniferous period at 358.86 Ma. It is the fourth period of both the Paleozoic and the Phanerozoic. It is named after Devon, South West England, where rocks from this period were first studied.

The first significant evolutionary radiation of life on land occurred during the Devonian, as free-sporing land plants (pteridophytes) began to spread across dry land, forming extensive coal forests which covered the continents. By the middle of the Devonian, several groups of vascular plants had evolved leaves and true roots, and by the end of the period the first seed-bearing plants (pteridospermatophytes) appeared. This rapid evolution and colonization process, which had begun during the Silurian, is known as the Silurian-Devonian Terrestrial Revolution. The earliest land animals, predominantly arthropods such as myriapods, arachnids and hexapods, also became well-established early in this period, after beginning their colonization of land at least from the Ordovician Period.

↑ Return to Menu

Eon (geology) in the context of Cenozoic

The Cenozoic Era (also known as Caenozoic, Kainozoic, or Neozoic Era; /ˌsnəˈz.ɪk, ˌsɛn-/; SEE-nə-ZOH-ik, SEN-ə-; lit.'new life') is Earth's current geological era, representing the last 66 million years of Earth's history. It is characterized by the dominance of mammals, insects, birds and angiosperms (flowering plants). It is the latest of three geological eras of the Phanerozoic Eon, preceded by the Mesozoic and Paleozoic. The Cenozoic started with the Cretaceous–Paleogene extinction event, when many species, including the non-avian dinosaurs, became extinct in an event attributed by most experts to the impact of a large asteroid or other celestial body, the Chicxulub impactor.

The Cenozoic is also known as the Age of Mammals because the terrestrial animals that dominated both hemispheres were mammals – the eutherians (placentals) in the Northern Hemisphere and the metatherians (marsupials, now mainly restricted to Australia and to some extent South America) in the Southern Hemisphere. The extinction of many groups allowed mammals and birds to greatly diversify so that large mammals and birds dominated life on Earth. The continents also moved into their current positions during this era.

↑ Return to Menu

Eon (geology) in the context of Carboniferous

The Carboniferous (/ˌkɑːrbəˈnɪfərəs/ KAR-bə-NIF-ər-əs) is a geologic period and system of the Paleozoic era that spans 60 million years, from the end of the Devonian Period 358.86 Ma (million years ago) to the beginning of the Permian Period, 298.9 Ma. It is the fifth period of the Phanerozoic eon. In North America, the Carboniferous is often treated as two separate geological periods, the earlier Mississippian and the later Pennsylvanian.

The name Carboniferous means "coal-bearing", from the Latin carbō ("coal") and ferō ("bear, carry"), and refers to the many coal beds formed globally during that time. The first of the modern "system" names, it was coined by geologists William Conybeare and William Phillips in 1822, based on a study of the British rock succession.

↑ Return to Menu

Eon (geology) in the context of Reducing atmosphere

A reducing atmosphere is an atmosphere in which oxidation is prevented by the absence of oxygen and other oxidizing gases or vapours, and which may contain actively reductant gases such as hydrogen, carbon monoxide, methane and hydrogen sulfide that would be readily oxidized to remove any free oxygen. Although Early Earth had a reducing prebiotic atmosphere prior to the Proterozoic eon, starting at about 2.5 billion years ago in the late Neoarchaean period, the Earth's atmosphere experienced a significant rise in oxygen and transitioned to an oxidizing atmosphere with a surplus of molecular oxygen (dioxygen, O2) as the primary oxidizing agent.

↑ Return to Menu

Eon (geology) in the context of Paleoproterozoic

The Paleoproterozoic Era (also spelled Palaeoproterozoic) is the first of the three sub-divisions (eras) of the Proterozoic eon, and also the longest era of the Earth's geological history, spanning from 2,500 to 1,600 million years ago (2.5–1.6 Ga). It is further subdivided into four geologic periods, namely the Siderian, Rhyacian, Orosirian and Statherian.

Paleontological evidence suggests that the Earth's rotational rate ~1.8 billion years ago equated to 20-hour days, implying a total of ~450 days per year. It was during this era that the continents first stabilized.

↑ Return to Menu

Eon (geology) in the context of Siderian

The Siderian ( /sˈdɪəri.ən, sɪ-/) is the first geologic period in the Paleoproterozoic Era and Proterozoic Eon. It lasted from 2500 to 2300 million years ago (Ma), spanning a time of 200 million years, and is followed by the Rhyacian Period. Instead of being based on stratigraphy, these dates are defined chronometrically.

The name Siderian is derived from the Greek word sideros, meaning "iron", and refers to the banded iron formations formed during this period. The term was proposed by the Subcommission on Precambrian Stratigraphy as a subdivision of the Proterozoic Eon, and was ratified by the International Union of Geological Sciences in 1990. Since the Siderian is well-defined by the lower edge of iron-deposition layers and the initial appearance of glacial deposits, alternate names have been suggested to mark the upper half of the period stratigraphically. The term Oxygenian was suggested in 2012 due to the change in Earth’s atmosphere during this time, while the name Skourian was proposed in 2021 as a rock-based alternative. As of December 2024, the Siderian is the earliest internationally recognized period on the geological timescale.

↑ Return to Menu