Wing in the context of "Winged genie"

Play Trivia Questions online!

or

Skip to study material about Wing in the context of "Winged genie"

Ad spacer

⭐ Core Definition: Wing

A wing is a type of fin that produces both lift and drag while moving through air. Wings are defined by two shape characteristics, an airfoil section and a planform. Wing efficiency is expressed as lift-to-drag ratio, which compares the benefit of lift with the air resistance of a given wing shape, as it flies. Aerodynamics includes the study of wing performance in air.

Equivalent foils that move through water are found on hydrofoil power vessels and foiling sailboats that lift out of the water at speed and on submarines that use diving planes to point the boat upwards or downwards, while running submerged. The study of foil performance in water is a subfield of Hydrodynamics.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Wing in the context of Winged genie

Winged genie is the conventional term for a recurring motif in the iconography of Assyrian sculpture.Winged genies are usually bearded male figures sporting birds' wings. The Genii are a reappearing trait in ancient Assyrian art, and are displayed most prominently in palaces or places of royalty. The two most notable places where the genies existed were Ashurnasirpal II’s palace Kalhu, and Sargon II’s palace Dur-Sharrukin.

↓ Explore More Topics
In this Dossier

Wing in the context of Terrestrial animal

Terrestrial animals are animals that live predominantly or entirely on land (e.g., cats, chickens, ants, most spiders), as compared with aquatic animals (e.g., fish, whales, octopuses, lobsters, etc.), who live predominantly or entirely in bodies of water; and semiaquatic animals (e.g., crocodilians, seals, platypus and most amphibians), who inhabit coastal, riparian or wetland areas and rely on both aquatic and terrestrial habitats. While most insects (who constitute over half of all known species in the animal kingdom) are terrestrial, some groups, such as mosquitoes and dragonflies, spend their egg and larval stages in water but emerge as fully terrestrial adults (imagos) after completing metamorphosis.

Terrestrial animals conduct respiratory gas exchange directly with the atmosphere, typically via specialized respiratory organs known as lungs, or via cutaneous respiration across the skin. They have also evolved homeostatic features such as impermeable cuticles that can restrict fluid loss, temperature fluctuations and infection, and an excretory system that can filter out nitrogenous waste in the form of urea or uric acid, in contrast to the ammonia-based excretion of aquatic animals. Without the buoyancy of an aqueous environment to support their weight, they have evolved robust skeletons that can hold up their body shape, as well as powerful appendages known as legs or limbs to facilitate terrestrial locomotion, although some perform limbless locomotion using body surface projections such as scales and setae. Some terrestrial animals even have wings or membranes that act as airfoils to generate lift, allowing them to fly and/or glide as airborne animals.

↑ Return to Menu

Wing in the context of Vortex

In fluid dynamics, a vortex (pl.: vortices or vortexes) is a region in a fluid in which the flow revolves around an axis line, which may be straight or curved. Vortices form in stirred fluids and may be observed in smoke rings, whirlpools in the wake of a boat, and in the winds surrounding a tropical cyclone, tornado, or dust devil.

Vortices are a major component of turbulent flow. The distribution of velocity, vorticity (the curl of the flow velocity), as well as the concept of circulation are used to characterize vortices. In most vortices, the fluid flow velocity is greatest next to its axis and decreases in inverse proportion to the distance from the axis.

↑ Return to Menu

Wing in the context of Pinnate

Pinnation (also called pennation) is the arrangement of feather-like or multi-divided features arising from both sides of a common axis. Pinnation occurs in biological morphology, in crystals, such as some forms of ice or metal crystals, and in patterns of erosion or stream beds.

The term derives from the Latin word pinna meaning "feather", "wing", or "fin". A similar concept is "pectination", which is a comb-like arrangement of parts (arising from one side of an axis only). Pinnation is commonly referred to in contrast to "palmation", in which the parts or structures radiate out from a common point. The terms "pinnation" and "pennation" are cognate, and although they are sometimes used distinctly, there is no consistent difference in the meaning or usage of the two words.

↑ Return to Menu

Wing in the context of Sailing into the wind

Sailing into the wind is a sailing expression that refers to a sail boat's ability to move forward despite heading toward, but not directly into, the wind. A sailboat cannot sail directly into the wind; the closest it can point is called close hauled, typically at an angle of about 45 degrees to the wind.

This maneuver is possible due to the interaction between the sails and the keel. The sail generates lift (similar to an airplane wing), and the keel resists lateral movement through the water, converting the side force from the wind into forward motion. Although the sail force acts partly sideways, the keel’s counteracting force keeps the boat on course and propels it forward.

↑ Return to Menu

Wing in the context of Jawed fish

Gnathostomata (/ˌnæθˈstɒmətə/; from Ancient Greek: γνάθος (gnathos) 'jaw' + στόμα (stoma) 'mouth') are jawed vertebrates. Gnathostome diversity comprises roughly 60,000 species, which accounts for 99% of all extant vertebrates, including all living bony fishes (both ray-finned and lobe-finned, including their terrestrial tetrapod relatives) and cartilaginous fishes, as well as extinct prehistoric fish such as placoderms and acanthodians. Most gnathostomes have retained ancestral traits like true teeth, a stomach, and paired appendages (pectoral and pelvic fins, limbs, wings, etc.). Other traits are elastin, horizontal semicircular canal of the inner ear, myelinated neurons, and an adaptive immune system which has discrete lymphoid organs (spleen and thymus) and uses V(D)J recombination to create antigen recognition sites, rather than using genetic recombination in the variable lymphocyte receptor gene.

It is now assumed that Gnathostomata evolved from ancestors that already possessed two pairs of paired fins. Until recently these ancestors, known as antiarchs, were thought to have lacked pectoral or pelvic fins. In addition to this, some placoderms were shown to have a third pair of paired appendages, that had been modified to claspers in males and pelvic basal plates in females — a pattern not seen in any other vertebrate group. The jawless Osteostraci are generally considered the closest sister taxon of Gnathostomata.

↑ Return to Menu

Wing in the context of Gliding flight

Gliding flight is heavier-than-air flight without the use of thrust; the term volplaning also refers to this mode of flight in animals. It is employed by gliding animals and by aircraft such as gliders. This mode of flight involves flying a significant distance horizontally compared to its descent and therefore can be distinguished from a mostly straight downward descent like a round parachute.

Although the human application of gliding flight usually refers to aircraft designed for this purpose, most powered aircraft are capable of gliding without engine power. As with sustained flight, gliding generally requires the application of an airfoil, such as the wings on aircraft or birds, or the gliding membrane of a gliding possum. However, gliding can be achieved with a flat (uncambered) wing, as with a simple paper plane, or even with card-throwing. However, some aircraft with lifting bodies and animals such as the flying snake can achieve gliding flight without any wings by creating a flattened surface underneath.

↑ Return to Menu

Wing in the context of Aircraft catapult

An aircraft catapult is an acceleration device used to help fixed-wing aircraft reach liftoff speed (VLOF) faster during takeoff, typically when trying to take off from a very short runway, as otherwise the aircraft engines alone cannot get the aircraft to sufficient airspeed quickly enough for the wings to generate the lift needed to sustain flight. Launching via catapults enables aircraft that typically are only capable of conventional takeoffs, especially heavier aircraft with significant payloads, to perform short takeoffs from the roll distances of light aircraft. Catapults are usually used on the deck of a ship — such as the flight deck of an aircraft carrier — as a form of assisted takeoff for navalised aircraft, but can also be installed on land-based runways, although this is rare.

Historically it was most common for seaplanes (which have pontoons instead of wheeled landing gears and thus cannot utilize runways) to be catapulted from ships onto nearby water for takeoff, allowing them to conduct aerial reconnaissance missions and be crane-hoisted back on board during retrieval, although by the late First World War their roles are largely supplanted by the more versatile biplanes that can take off and land on carrier decks unassisted. During the Second World War before the advent of escort carriers, monoplane fighter aircraft (notably the Hawker Hurricane) would sometimes be catapulted from "catapult-equipped merchant" (CAM) vessels for one-way sorties to repel enemy aircraft harassing shipping lanes, forcing the returning pilot to either divert to a land-based airstrip, jump out by parachute, or ditch in the water near the convoy and wait for rescue. By the time fleet carriers became the norm in WW2, catapult launches have become largely unnecessary and carrier-based fighter-bombers would routinely perform self-powered takeoffs and landings off and onto carrier decks, especially during the naval aviation-dominated Pacific War between the United States and the Empire of Japan. However, escalating arms races during the Cold War accelerated the adoption of the heavier jet aircraft for naval operations, thus motivating the development of new catapult systems, especially after the popularization of angled flight decks further limited the practical distance available as takeoff runways. Nowadays, jet aircraft can launch from aircraft carriers via either catapults or ski-jump deck, and perform optics-assisted landing onto the same ship with help from decelerative arresting gears.

↑ Return to Menu